DOI QR코드

DOI QR Code

Effects of Thickness and Defects of DLC Coating Layer on Corrosion Resistance of Metallic Bipolar Plates of PEMFCs

PEMFC 금속분리판의 내식성에 미치는 DLC 코팅층의 두께 및 결함의 영향

  • Dong-Ho Shin (Department of Marine Engineering, Graduate School, Mokpo National Maritime University) ;
  • Seong-Jong Kim (Division of Marine System Engineering, Mokpo National Maritime University)
  • 신동호 (국립목포해양대학교 대학원) ;
  • 김성종 (국립목포해양대학교 기관시스템공학부)
  • Received : 2024.01.03
  • Accepted : 2024.01.15
  • Published : 2024.06.30

Abstract

DLC coatings have been widely applied in industrial fields that require high corrosion resistance due to their excellent mechanical characteristics and chemical stability. In this research, effects of DLC coating thickness and defects on corrosion resistance were investigated for application of metallic bipolar plates in polymer membrane electrolyte fuel cells (PEMFCs). Results revealed that a DLC coating thickness of 0.7 ㎛ could lead to a defect size reduction of about 75.9% compared to that of 0.3 ㎛.As a result of potentiodynamic polarization experiments, the current density under a potential of 0.6 V was measured to be less than 1 ㎂/cm2,which was an excellent value. Inparticular, the delamination ratio and the decrease rate of maximum pitting depth were up to 84.8% and 63.3%, respectively, with an increase in the DLC coating thickness. These results demonstrate that DLC coating thickness and defects are factors that can affect corrosion resistance of DLC coating and its substrate.

Keywords

References

  1. D. K. Rajak, A. Kumar, A. Behera, and P. L. Menezes, Diamond-like carbon (Dlc) coatings: Classification, properties, and applications, Applied science, 11, 1 (2021). Doi: https://doi.org/10.3390/app11104445 
  2. H. J. Park, J. H. Kim, and K. I. Moon, Effect of Fluorine Gas Addition for Improvement of Surface Wear Property of DLC Thin Film Depostied by using PECVD, Journal of Surface Science and Engineering, 54, 357 (2021). Doi: https://doi.org/10.5695/JKISE.2021.54.6.357 
  3. Z. Ren, H. Qin, Y. Dong, G. L. Doll, and C. Ye, A boron-doped diamond like carbon coating with high hardness and low friction coefficient, Wear, 436, 203031 (2019). Doi: https://doi.org/10.1016/j.wear.2019.203031 
  4. W. J. Kim, J. G. Kim, S. J. Park, and K. R. Lee, Effect of Si Addition on the Corrosion Resistance of DiamondLike Carbon (DLC) Films, Corrosion Science and Technology, 4, 226 (2005). https://koreascience.kr/article/JAKO200521161694088.page 
  5. T. Nagai, M. Hiratsuka, A. Alnazi, H. Nakamori, and K. Hirakuri, Anticorrosion of DLC coating in acid solutions, Applied Surface Science, 552, 149373 (2021). Doi: https://doi.org/10.1016/j.apsusc.2021.149373 
  6. J. G. Kim, K. R. Lee, Y. S. Kim, and W. S. Hwang, Electrochemical Evaluation of Si-Incroporated Diamond-Like Carbon (DLC) Coatings Deposited on STS 316L and Ti Alloy for Biomedical Applications, Corrosion Science and Technology, 6, 18 (2007). https://koreascience.kr/article/JAKO200721161736113.page 
  7. A. Tyagi, R. S. Walia, Q. Murtaza, S. M. Pandey, P. K. Tyagi, and B. Bajaj, A critical review of diamond like carbon coating for wear resistance applications, International Journal of Refractory Metals & Hard Materials, 78, 107 (2019). Doi: https://doi.org/10.1016/j.ijrmhm.2018.09.006 
  8. J. S. Song and T. W. Nam, The Effects of Interlayer on the DLC Coating, Corrosion Science and Technology, 10, 65 (2011). Doi: https://doi.org/10.14773/cst.2011.10.2.065 
  9. I. Alaefour, S. Shahgaldi, J. Zhao, and X. Li, Synthesis and Ex-Situ characterizations of diamond-like carbon coatings for metallic bipolar plates in PEM fuel cells, International Journal of Hydrogen Energy, 46, 11059 (2021). Doi: https://doi.org/10.1016/j.ijhydene.2020.09.259 
  10. H. Dong, S. He, X. Wang, C. Zhang, and D. Sun, Study on conductivity and corrosion resistance of N-doped and Cr/N co-doped DLC films on bipolar plates for PEMFC, Diamond & Related Materials, 110, 108156, (2020). Doi: https://doi.org/10.1016/j.diamond.2020.108156 
  11. B. B. Han, D. Y. Ju, M. R. Chai, H. J. Zhao, and S. Sato, Corrosion Resistance of DLC Film-Coated SUS316L Steel Prepared by Ion Beam Enhanced Deposition, Advances in Materials Science and Engineering, 2019, Article ID 7480618 (2019). Doi: https://doi.org/10.1155/2019/7480618 
  12. D. H. Shin and S. J. Kim, Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC, Corrosion Science and Technology, 20, 435 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.435 
  13. G. Hinds and E. Brightman, Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates, International Journal of Hydrogen Energy, 40, 2785 (2015). Doi: https://doi.org/10.1016/j.ijhydene.2014.12.085 
  14. H. S. Heo and S. J. Kim, Electrochemical Characteristics of MMO(Ti/Ru)-Coated Titanium in a Cathode Environment of Polymer Electrolyte Membrane Fuel Cell, Corrosion Science and Technology, 21, 340 (2022). Doi: https://doi.org/10.14773/cst.2022.21.5.340 
  15. H. Wang, M. A. Sweikart, and J. A. Turner, Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, Journal of Power Sources, 115, 243 (2003). Doi: https://doi.org/10.1016/S0378-7753(03)00023-5 
  16. C. Forsich, D. Heim, and T. Mueller, Influence of the deposition temperature on mechanical and tribological properties of a-C:H:Si coatings on nitrided and postoxidized steel deposited by DC-PACVD, Surface and Coating Technology, 203, 521 (2008). Doi: https://doi.org/10.1016/j.surfcoat.2008.05.044 
  17. F. D. Duminica, R. Belchi, L. Libralesso, and D. Mercier, Investigation of Cr(N)/DLC multilayer coatings elaborated by PVD for high wear resistance and low friction applications, Surface and Coating Technology, 337, 396 (2018). Doi: https://doi.org/10.1016/j.surfcoat.2018.01.052 
  18. D. Kek Merl, P. Panjan, M. Cekada, M. Kahn, and W. Waldhauser, Corrosion Properties of DLC-Coated Stainless Steel in Hanks Solution for Biomedical Applications, ECS Transactions, 35, 67 (2011). Doi: https://doi.org/10.1149/1.3571977 
  19. W. Mingge, L. Congda, T. Dapeng, H. Tao, C. Guohai, and W. Donghui, Effects of metal buffer layer for amorphous carbon film of 304 stainless steel bipolar plate, Thin Solid Films, 616, 507 (2016). Doi: https://doi.org/10.1016/j.tsf.2016.07.043 
  20. T. Spalvins and W. A. Brainard, Nodular Growth in Thick-Sputtered Metallic Coatings, Journal of Vacuum Science & Technology, 11, 1186 (1974). Doi: https://doi.org/10.1116/1.1318706 
  21. P. Panjan, A. Drnovsek, P. Gselman, M. Cekada, and M. Panjan, Review of growth defects in thin films prepared by PVD techniques, Coatings, 10, 1 (2020). Doi: https://doi.org/10.3390/coatings10050447 
  22. B. Haldar and P. Saha, Identifying defects and problems in laser cladding and suggestions of some remedies for the same, Materialstoday:Proceedings, 5, 13090 (2018). Doi: https://doi.org/10.1016/j.matpr.2018.02.297 
  23. X. Xie, J. Li, M. Dong, H. Zhang, and L. Wang, Structure and properties of TiSiCN coatings with different bias volages by arc ion plating, Surface Topography: Metrology and Properties, 6, 014003 (2018). Doi: https://doi.org/10.1088/2051-672X/aaa6fd 
  24. F. A. Delfin, S. P. Bruhl, C. Forsich, and D. Heim, Carbon based DLC films: Influence of the processing parameters on the structure and properties, Materia(Rio de Janeiro), 23, 1-8 (2018). Doi: https://doi.org/10.1590/S1517-707620180002.0395 
  25. E. Bemporad, M. Sebastiani, F. Casadei, and F. Carassiti, Modelling, production and characterisation of duplex coatings (HVOF and PVD) on Ti-6Al-4V substrate for specific mechanical applications, Surface and Coating Technology, 201, 7652 (2007). Doi: https://doi.org/10.1016/j.surfcoat.2007.02.041 
  26. P. Yi, D. Zhang, L. Peng, and X. Lai, Impact of Film Thickness on Defects and the Graphitization of Nanothin Carbon Coatings Used for Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cells, ACS Applied Materials and Interfaces, 10, 34561 (2018). Doi: https://doi.org/10.1021/acsami.8b08263 
  27. J. Gunnars and A. Alahelisten, Thermal stresses in diamond coatings and their influence on coating wear and failure, Surface and Coating Technology, 80, 303 (1996). Doi: https://doi.org/10.1016/0257-8972(95)02436-0 
  28. Y. Lifshitz, S. R. Kasi, J. W. Rabalais, and W. Eckstein, Subplantation model for film growth from hyperthermal species, Physical Review Letters, 41, 10468 (1990). Doi: https://doi.org/10.1103/PhysRevB.41.10468 
  29. A. Dorner, C. Schurer, G. Reisel, G. Irmer, O. Seidel, and E. Muller, Diamond-like carbon-coated Ti6A14V: Influence of the coating thickness on the structure and the abrasive wear resistance, Wear, 249, 489 (2001). Doi: https://doi.org/10.1016/S0043-1648(01)00587-7 
  30. Z. H. Liu, J. F. Zhao, and J. McLaughlin, A study of microstructural and electrochemical properties of ultra-thin DLC coatings on AlTiC substrates deposited using the ion beam technique, Diamond & Related Materials, 8, 56 (1999). Doi: https://doi.org/10.1016/S0925-9635(98)00364-1 
  31. R. L. Boxman and S. Goldsmith, Macroparticle contamination in cathodic arc coatings: generation, transport and control, Surface and Coating Technology, 52, 39 (1992). Doi: https://doi.org/10.1016/0257-8972(92)90369-L 
  32. L. Joska, J. Fojt, L. Cvrcek, and V. Brezina, Properties of titanium-alloyed DLC layers for medical applications, Biomatter, 4, 1 (2014). Doi: https://doi.org/10.4161/biom.29505 
  33. E. Ilic, A. Pardo, T. Suter, S. Mischler, P. Schmutz, and R. Hauert, A methodology for characterizing the electrochemical stability of DLC coated interlayers and interfaces, Surface and Coating Technology, 375, 402 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.07.055 
  34. Y. Yang, X. Ning, H. Tang, L. Guo, and H. Liu, Effects of passive films on corrosion resistance of uncoated SS316L bipolar plates for proton exchange membrane fuel cell application, Applied Surface Science, 320, 274 (2014). Doi: https://doi.org/10.1016/j.apsusc.2014.09.049 
  35. P. Yi, D. Zhang, D. Qiu, L. Peng, and X. Lai, Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 44, 6813 (2019). Doi: https://doi.org/10.1016/j.ijhydene.2019.01.176 
  36. D. H. Shin and S. J. Kim, Electrochemical characteristics and damage behaviour of DLC-coated 316L stainless steel for metallic bipolar plates of PEMFCs, Transactions of the IMF, 101, 308 (2023). Doi: https://doi.org/10.1080/00202967.2023.2223835 
  37. Y. Pauleau, Residual stresses in DLC films and adhesion to various substrates, Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, pp. 102 - 136, Springer, New York, USA (2008). Doi: https://doi.org/10.1007/978-0-387-49891-1_4 
  38. M. S. Park, D. Y. Kim, C. S. Shin, and W. R. Kim, Improved Adhesion of DLC Films by using a Nitriding Layer on AISI H13 Substrate, Journal of Surface Science and Engineering, 54, 307 (2021). Doi: https://doi.org/10.5695/JKISE.2021.54.6.307 
  39. A. H. S. Bueno, J. Solis, H. Zhao, C. Wang, T. A. Simoes, M. Bryant, and A. Neville, Tribocorrosion evaluation of hydrogenated and silicon DLC coatings on carbon steel for use in valves, pistons and pumps in oil and gas industry, Wear, 394-395, 60 (2018). Doi: https://doi.org/10.1016/j.wear.2017.09.026 
  40. ASTM G46-94, Standard Guide for Examination and Evaluation of Pitting Corrosion, ASTM International, West Conshohocken, PA (2018). https://www.astm.org/g0046-21.html 
  41. D. H. Shin and S. J. Kim, Electrochemical Characteristics and Damage Behavior in Cathode Operating Conditions of 316L Stainless Steel with Test Time and Applied Potential in Metallic Bipolar Plates for PEMFC, Corrosion Science and Technology, 20, 451 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.451 
  42. S. Guo, L. Xu, L. Zhang, W. Chang, and M. Lu, Characterization of corrosion scale formed on 3Cr steel in CO2-saturated formation water, Corrosion Science, 110, 123 (2016). Doi: https://doi.org/10.1016/j.corsci.2016.04.033 
  43. H. Parangusan, J. Bhadra, and N. Al-Thani, A review of passivity breakdown on metal surfaces: influence of chloride- and sulfide-ion concentrations, temperature, and pH, Emergent Materials, 4, 1187 (2021). Doi: https://doi.org/10.1007/s42247-021-00194-6 
  44. D. H. Shin and S. J. Kim, Electrochemical Characteristics with NaCl Concentrations on Stainless Steels of Metallic Bipolar Plates for PEMFCs, Coatings, 13, 109 (2023). Doi: https://doi.org/10.3390/coatings13010109 
  45. J. Zhang, Z. L. Wang, Z. M. Wang, and X. Han, Chemical analysis of the initial corrosion layer on pipeline steels in simulated CO2-enhanced oil recovery brines, Corrosion Science, 65, 397 (2012). Doi: https://doi.org/10.1016/j.corsci.2012.08.045 
  46. H. Kwon, S. S. Jang, Y. H. Park, T. S. Kim, Y. D. Kim, H. J. Nam, and Y. C. Joo, Investigation of the electrical contact behaviors in Au-to-Au thin-film contacts for RF MEMS switches, Journal of Micromechanics and Microengineering, 18, 1 (2008). Doi: https://doi.org/10.1088/0960-1317/20/8/085025 
  47. F. Cheng and J. Sun, Proc. 65th IEEE Holm Conference on Electrical Contacts, pp. 250 - 256, The Institute of Electrical and Electronics Engineers Inc., USA (2019). Doi: https://doi.org/10.1109/HOLM.2019.8923685 
  48. H. S. Heo and S. J. Kim, Investigation of Electrochemical Characteristics and Interfacial Contact Resistance of TiN-Coated Titanium as Bipolar Plate in Polymer Electrolyte Membrane Fuel Cell, Coatings, 13, 123 (2023). Doi: https://doi.org/10.3390/coatings13010123