DOI QR코드

DOI QR Code

Infantile nystagmus syndrome: Promise and pitfalls of genetic testing

  • Eun Hye Oh (Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine) ;
  • Jae-Hwan Choi (Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine)
  • Received : 2024.05.13
  • Accepted : 2024.06.17
  • Published : 2024.06.30

Abstract

Infantile nystagmus syndrome (INS) refers to congenital forms of nystagmus that are present at birth or during infancy. This syndrome may be caused by afferent visual system disorders or abnormal development of the ocular motor system. INS is a genetically heterogeneous disorder for which there are more than 100 causative genes. Since applying clinical tests for the differential diagnosis of INS can be challenging in early infancy and children, genetic testings such as next-generation sequencing are becoming more important for achieving accurate diagnoses. An improved understanding of the molecular mechanisms of INS may also lead to the development of gene-based therapies for INS. These advantages of genetic testing have the potential to change the diagnostic paradigm of patients with INS. However, the diagnostic pathway based on genetic testing still has several limitations in terms of the therapeutic effect and methodology. This review summarizes genetic and clinical features of INS, and discusses the promise and pitfalls of genetic testing in INS.

Keywords

References

  1. Leigh RJ, Zee DS. The neurology of eye movements. 5th ed. Oxford University Press; 2015. 
  2. Brodsky MC, Dell'Osso LF. A unifying neurologic mechanism for infantile nystagmus. JAMA Ophthalmol 2014;132:761-8. 
  3. Richards MD, Wong A. Infantile nystagmus syndrome: clinical characteristics, current theories of pathogenesis, diagnosis, and management. Can J Ophthalmol 2015;50:400-8. 
  4. Gottlob I, Proudlock FA. Aetiology of infantile nystagmus. Curr Opin Neurol 2014;27:83-91. 
  5. Thomas MG, Maconachie G, Sheth V, McLean RJ, Gottlob I. Development and clinical utility of a novel diagnostic nystagmus gene panel using targeted next-generation sequencing. Eur J Hum Genet 2017;25:725-34. 
  6. Rim JH, Lee ST, Gee HY, Lee BJ, Choi JR, Park HW, et al. Accuracy of next-generation sequencing for molecular diagnosis in patients with infantile nystagmus syndrome. JAMA Ophthalmol 2017;135:1376-85. 
  7. Choi JH, Kim SJ, Thomas MG, Jung JH, Oh EH, Shin JH, et al. Diagnostic yield of targeted next-generation sequencing in infantile nystagmus syndrome. Ophthalmic Genet 2021;42:561-9. 
  8. Cavuoto KM, Binenbaum G, Chang MY, Heidary G, Morrison DG, Trivedi RH, et al. Genetic testing for infantile nystagmus syndrome with or without associated findings. J AAPOS 2023;27:259-64. 
  9. Thomas MG, Crosier M, Lindsay S, Kumar A, Thomas S, Araki M, et al. The clinical and molecular genetic features of idiopathic infantile periodic alternating nystagmus. Brain 2011;134(Pt 3):892-902. 
  10. Choi JH, Jung JH, Oh EH, Shin JH, Kim HS, Seo JH, et al. Genotype and phenotype spectrum of FRMD7-associated infantile nystagmus syndrome. Invest Ophthalmol Vis Sci 2018;59:3181-8. 
  11. Self J, Lotery A. A review of the molecular genetics of congenital idiopathic nystagmus (CIN). Ophthalmic Genet 2007;28:187-91. 
  12. Watkins RJ, Thomas MG, Talbot CJ, Gottlob I, Shackleton S. The role of FRMD7 in idiopathic infantile nystagmus. J Ophthalmol 2012;2012:460956. 
  13. Aychoua N, Schiff E, Malka S, Tailor VK, Chan HW, Oluonye N, et al. Prospective study of pediatric patients presenting with idiopathic infantile nystagmus-management and molecular diagnostics. Front Genet 2022;13:977806. 
  14. Liu J, Jia Y, Wang L, Bu J. A previously unidentified deletion in G protein-coupled receptor 143 causing X-linked congenital nystagmus in a Chinese family. Indian J Ophthalmol 2016;64:813-7. 
  15. Tarpey P, Thomas S, Sarvananthan N, Mallya U, Lisgo S, Talbot CJ, et al. Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus. Nat Genet 2006;38:1242-4. 
  16. Pu J, Mao Y, Lei X, Yan Y, Lu X, Tian J, et al. FERM domain containing protein 7 interacts with the Rho GDP dissociation inhibitor and specifically activates Rac1 signaling. PLoS One 2013;8:e73108. 
  17. Watkins RJ, Patil R, Goult BT, Thomas MG, Gottlob I, Shackleton S. A novel interaction between FRMD7 and CASK: evidence for a causal role in idiopathic infantile nystagmus. Hum Mol Genet 2013;22:2105-18. 
  18. Thomas MG, Crosier M, Lindsay S, Kumar A, Araki M, Leroy BP, et al. Abnormal retinal development associated with FRMD7 mutations. Hum Mol Genet 2014;23:4086-93. 
  19. Moon D, Park HW, Surl D, Won D, Lee ST, Shin S, et al. Precision medicine through next-generation sequencing in inherited eye diseases in a Korean cohort. Genes (Basel) 2021;13:27. 
  20. Self JE, Shawkat F, Malpas CT, Thomas NS, Harris CM, Hodgkins PR, et al. Allelic variation of the FRMD7 gene in congenital idiopathic nystagmus. Arch Ophthalmol 2007;125:1255-63. 
  21. He X, Gu F, Wang Y, Yan J, Zhang M, Huang S, et al. A novel mutation in FRMD7 causing X-linked idiopathic congenital nystagmus in a large family. Mol Vis 2008;14:56-60. 
  22. Kaplan Y, Vargel I, Kansu T, Akin B, Rohmann E, Kamaci S, et al. Skewed X inactivation in an X linked nystagmus family resulted from a novel, p.R229G, missense mutation in the FRMD7 gene. Br J Ophthalmol 2008;92:135-41. 
  23. Wu S, Deng S, Song Z, Xu H, Yang Z, Liu X, et al. A disease-causing FRMD7 variant in a Chinese family with infantile nystagmus. J Mol Neurosci 2019;67:418-23. 
  24. Wang P, Ya P, Li D, Lv S, Yang D. Nystagmus with pendular low amplitude, high frequency components (PLAHF) in association with retinal disease. Strabismus 2020;28:3-6. 
  25. Chacon-Camacho OF, Zenteno JC. Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases 2015;3:112-24. 
  26. Glaser T, Walton DS, Maas RL. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet 1992;2:232-9. 
  27. Lee S, Lee SH, Heo H, Oh EH, Shin JH, Kim HS, et al. Impaired DNA-binding affinity of novel PAX6 mutations. Sci Rep 2020;10:3062. 
  28. Jung JH, Oh EH, Shin JH, Kim HS, Choi SY, Choi KD, et al. Identification of a novel GPR143 mutation in X-linked ocular albinism with marked intrafamilial phenotypic variability. J Genet 2018;97:1479-84. 
  29. Dhurandhar D, Sahoo NK, Mariappan I, Narayanan R. Gene therapy in retinal diseases: a review. Indian J Ophthalmol 2021;69:2257-65. 
  30. Liu S, Kuht HJ, Moon EH, Maconachie GDE, Thomas MG. Current and emerging treatments for albinism. Surv Ophthalmol 2021;66:362-77. 
  31. Naruto T, Okamoto N, Masuda K, Endo T, Hatsukawa Y, Kohmoto T, et al. Deep intronic GPR143 mutation in a Japanese family with ocular albinism. Sci Rep 2015;5:11334.