DOI QR코드

DOI QR Code

구리 배관의 Sn 첨가에 따른 응력 및 다양한 환경에서의 부식 특성

Corrosion characteristics in stress and various environments with Sn addition to Cu pipe

  • 김세림 (한국해양대학교 해양신소재융합공학과) ;
  • 김의준 (한국해양대학교 해양신소재융합공학과) ;
  • 이명훈 (한국부식방식연구센터) ;
  • 이승효 (한국해양대학교 해양신소재융합공학과)
  • Serim Kim (Korea Maritime and Ocean University, Department of Ocean Advanced Materials Convergence Engineering) ;
  • Uijun Kim (Korea Maritime and Ocean University, Department of Ocean Advanced Materials Convergence Engineering) ;
  • Myeonghoon Lee (Korean Institute of Corrosion Science and Technology) ;
  • Seunghyo Lee (Korea Maritime and Ocean University, Department of Ocean Advanced Materials Convergence Engineering)
  • 투고 : 2024.04.19
  • 심사 : 2024.04.25
  • 발행 : 2024.06.30

초록

Cu as a heat exchanger tube is an important component in thermal fluid transfer. However, Cu tubes are exposed to stress in certain environments, leading to stress corrosion cracking (SCC). In this study, the effect of Sn addition on microstructure and corrosion characteristics was examined. The microstructural examination revealed the presence of columnar crystal and a grain refinement due to the addition of Sn. Electrochemical measurements showed that the 5 wt.% NH3 environment was the most vulnerable environment to Cu corrosion, and the corrosion current density increased as stress increased. The immersion test exhibited the formation of Cu2O and Cu(OH)2 corrosion product in 3.5 wt.% NaCl and 5 wt.% NH3 environments, respectively. Results indicated that Sn addition to Cu was an important factor in improving the mechanical strength.

키워드

과제정보

이 논문은 2024년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20200599, 해양플라스틱 쓰레기 저감을 위한 기술 개발, 자율운항선박 기술개발).

참고문헌

  1. H. Park, Y. Hwang, K. Lee, Failure analysis of condenser fin tubes of package type air conditioner for navy vessel, International Journal of Surface Science and Engineering, 49 (2016) 439-446.
  2. M. Ali, A. Ul Hamid, L.M. Alhems, A. Saeed, Review of common failures in heat exchangers-Part I: Mechanical and elevated temperature failures, Engineering Failure Analysis, 109 (2020) 104396-104405.
  3. B. Pang, S. Ong, H. Lee, Corrosion property evaluation of copper alloy tubes against sea water, International Journal of Surface Science and Engineering, 42 (2009) 280-286.
  4. A. Fateh, M. Aliofkhazraei, A.R. Rezvanian, Review of corrosive environments for copper and its corrosion inhibitors, Arabian Journal of Chemistry, 13 (2020) 481-544.
  5. J.R. Davis, Copper and copper alloys, Joseph R, ASM International Handbook Committee, Materials park OH, (2001) 4-7.
  6. R. Sandstrom, The role of phosphorus for mechanical properties in copper, SKBdoc Stralsakerhetsmyndighenten technical report, 1 (2014) 1-23.
  7. B. Kuznicka, K. Junik, Intergranular stress corrosion cracking of copper-A case study, Corrosion Science, 49 (2007) 3905-3916.
  8. E.I. Meletis, R.F. Hochman, A review of the crystallography of stress corrosion cracking, Corrosion Science, 26 (1986) 63-90.
  9. H.W. King, Quantitative size-factors for metallic solid solutions, Journal of Materials Science, 1 (1966) 79-90.
  10. S. So, K. Kim, S. Lee, Y. Yu, H. Lim, M. Oh, Effects of Sn content and hot deformation on microstructure and mechanical properties of binary high Sn content Cu-Sn alloys, Materials Science and Enginnering, 796 (2020) 140054-140060.
  11. B.A. Tahir, J. Ali, M. Saktioto, R.A. Fadhali, A.A. Rahman, A study of FBG sensor and electrical strain gauge for strain measurements, Journal of Optoeletronics and Advanced Materials, 10 (2008) 2564-2568.
  12. H. Liu, S. Yang, C. Xie, Q. Zhang, Y. Cao, Microstructure characterization and mechanism of fatigue crack initiation near pores for 6005A CMT welded joint, Journal of Material Science and Engineering: A, 707 (2017) 22-29.
  13. M.J. Balart, J.B. Patel, F. Gao, Z. Fan, Grain refinement of deoxidized copper, Metallurgical and Materials Transactions A, 47 (2016) 4988-5011.
  14. A.H. White, L.H. Germer, The rate of oxidation of copper at room temperature, Journal of The Electrochemical Society, 81 (1942) 305-319.
  15. C. Gattinoni, A. Michaelides, Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides, Surface Science Reports, 70 (2015) 424-447.
  16. B. Jeon, S.K.R.S. Sankaranarayanan, A.C.T. van Duin, S. Ramanathan, Influence of surface orientation and defects on early-stage oxidation and ultrathin oxide growth on pure copper, Philosophical Magazine, 91 (2011) 4073-4088.
  17. R. Rebak, B. Xia Z, R. Safruddin, Z. Szklarska-Smialowska, Effect of solution composition and electrochemical potential on stress corrosion cracking of X-52 pipeline steel, Corrosion, 52 (1996) 396-405.
  18. W. Li, D.Y. Li, Variations of work function and corrosion behaviors of deformed copper surfaces. Applied Surface Science, 240 (2005) 388-395.
  19. E.M. Gutman, G. Solovioff, D. Eliezer, The mechanochemical behavior of type 316L stainless steel, Corrosion Science, 38 (1996) 1141-1145.
  20. H. Peltola, M. Lindgren, Failure analysis of a copper tube in a finned heat exchanger. Engineering Failure Analysis, 51 (2015) 83-97.
  21. X. Liu, H. Li, X. Zhao, Y. Chen, S. Wang, Comparison of the corrosion behavior of copper tubes in formic acid and acetic acid environment, Materials and Corrosion, 72 (2021) 1919-1927.
  22. C. Tang, X. Ning, J. Li, H.L. Guo, Y. Yang, Modulating conductivity type of cuprous oxide (Cu2O) films on copper foil in aqueous solution by comproportionation, Journal of Materials Science and Technology, 35 (2019) 1570-1577.
  23. P. Shi, Q. Wang, Y. Xum W. Luo, Corrosion behavior of bulk nanocrystalline copper in ammonia solution, Materials Letters. 65 (2011) 857-859.