DOI QR코드

DOI QR Code

Enhanced Photocatalytic Disinfection Efficiency through TiO2/WO3 Composite Synthesis and Heat Treatment Optimization

  • Sang-Hee Kim (Department of Coast Gurad Sutdies, National Korea Maritime and Ocean University) ;
  • Seo-Hee Kim (Department of Ocean Advanced Materials Convergence Engineering, National Korea Maritime and Ocean University) ;
  • Jun Kang (Department of Marine System Engineering, National Korea Maritime and Ocean University) ;
  • Myeong-Hoon Lee (Korea Institute of Corrosion Science and Technology, National Korea Maritime and Ocean University) ;
  • Yong-Sup Yun (Department of Coast Gurad Sutdies, National Korea Maritime and Ocean University)
  • Received : 2024.04.12
  • Accepted : 2024.06.03
  • Published : 2024.06.30

Abstract

This study focuses on improving the photocatalytic degradation efficiency by synthesizing a TiO2/WO3 composite. Given the environmental significance of photocatalysis and the limitations posed by TiO2's large bandgap and high electron recombination rate, we explored doping, surface modification, and synthesis strategies. The composite was created using a ball mill process and heat treatment, analyzed with field emission scanning electron microscope, high resolution X-ray diffraction, Raman microscope, and UV-Vis/NIR spectrometer to examine its morphology, composition and absorbance. We found that incorporating WO3 into the TiO2 lattice forms a Wx-Ti1-x-O2 solution, with optimal WO3 content reducing the band gap and enhancing sterilization efficiency by inhibiting the anatasese to rutile transition. This contributes to the field by offering a way to overcome TiO2's limitations and improve photocatalytic performance.

Keywords

References

  1. F. Riboni, M.V. Dozzi, M.C. Paganini, E. Giamello, E. Selli, Photocatalytic activity of TiO2-WO3 mixed oxides in formic acid oxidation, Catalysis Today, 287 (2017) 176-181. https://doi.org/10.1016/j.cattod.2016.12.031
  2. M.N. Magana, A.E. Gonzalez, L.M. Ix, S.C. Diaz, R. Gomez, Improved photocatalytic oxidation of arsenic (III) with WO3/TiO2 nanomaterials synthesized by the solgel method, Journal of Environmental Management, 282 (2021) 111602.
  3. V. Dutta, S. Sharma, P. Raizada, V.K. Thakur, A.A.P. Khan, V. Saini, P. Singh, An overview on WO3 based photocatalyst for environmental remediation, Journal of Environmental Chemical Engineering, 9 (2021) 105018.
  4. A. Wang, A. Sienkiewicz, P.R. Konieczna, E.K. Nejman, A.W. Morawski, Influence of modification of titanium dioxide by silane coupling agents on the photocatalytic activity and stability, Journal of Environmental Chemical Engineering, 8 (2020) 103917.
  5. X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, Photocatalytic activity of WOx-TiO2 under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 141 (2001) 209-217. https://doi.org/10.1016/S1010-6030(01)00446-4
  6. M. Desseigne, N. Dirany, V. Chevallier, M. Arab, Shape dependence of photosensitive properties of WO3 oxide for photocatalysis under solar light irradiation, Applied Surface Science, 483 (2019) 313-323. https://doi.org/10.1016/j.apsusc.2019.03.269
  7. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews, 95 (1995) 735-758. https://doi.org/10.1021/cr00035a013
  8. H. Gao, P. Zhang, J. Hu, J. Pan, J. Fan, G. Shao, One-dimensional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation, Applied Surface Science, 391 (2017) 211-217. https://doi.org/10.1016/j.apsusc.2016.06.170
  9. L. Wang, B. Cheng, L. Zhang, J. Yu, In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction, Small, 17 (2021) 2103447.
  10. P. Raizada, V. Soni, A. Kumar, P. Singh, A.A.P. Khan, A.M. Asiri, V.H. Nguyen, Surface defect engineering of metal oxides photocatalyst for energy application and water treatment, Journal of Materiomics, 7 (2021) 388-418. https://doi.org/10.1016/j.jmat.2020.10.009
  11. A. Wanag, A. Sienkiewicz, P.R. Konieczna, E.K. Nejman, A.W. Morawski, Influence of modification of titanium dioxide by silane coupling agents on the photocatalytic activity and stability, Journal of Environmental Chemical Engineering, 8 (2020) 103917.
  12. F. Riboni, L.G. Bettini, D.W. Bahnemann, E. Selli, WO3-TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides, Catalysis Today, 209 (2013) 28-34. https://doi.org/10.1016/j.cattod.2013.01.008
  13. Y. Yamin, N. Keller, V. Keller, WO3-modified TiO2 nanotubes for photocatalytic elimination of methylethylketone under UVA and solar light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 245 (2012) 43-57. https://doi.org/10.1016/j.jphotochem.2012.06.021
  14. Y. Li, X. Zhai, Y. Liu, H. Wei, J. Ma, M. Chen, S. Wei, WO3-based materials as electrocatalysts for hydrogen evolution reaction, Frontiers of Materials, 7 (2020) 105.
  15. I. Paramasivam, Y.C. Nah, C. Das, N.K. Shrestha, P. Schmuki, WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity, Chemistry-A European Journal, 16(30) (2010) 8993-8997. https://doi.org/10.1002/chem.201000397
  16. A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 91 (2009) 397-405. https://doi.org/10.1016/j.apcatb.2009.06.005
  17. H. Khan, M.G. Rigamonti, G.S. Patience, D.C. Boffito, Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark, Applied Catalysis B: Environmental, 226 (2018) 311-323. https://doi.org/10.1016/j.apcatb.2017.12.049
  18. K.K. Akurati, A. Vital, J.P. Dellemann, K. Michalow, T. Graule, D. Ferri, A. Baiker, Flame-made WO3/TiO2 nanoparticles: relation between surface acidity, structure and photocatalytic activity, Applied Catalysis B: Environmental, 79 (2008) 53-62. https://doi.org/10.1016/j.apcatb.2007.09.036
  19. C. Byrne, R. Fagan, S. Hinder, D.E. McCormack, S.C. Pillai, New approach of modifying the anatase to anatase transition temperature in TiO2 photocatalysts, RSC Advances, 6 (2016) 95232-95238. https://doi.org/10.1039/C6RA19759K
  20. C.H. Shim, The effect of the operating variables on the batch ball milling, Prospectives of Industrial Chemistry, 3 (2000) 46-57.
  21. Y. Gao, J. Yin, G. Ren, H. Liu, A. Xing, Synthesis of high-activity TiO2/WO3 photocatalyst via environmentally friendly and microwave assisted hydrothermal process, Journal of the Chemical Society of Pakistan, 33 (2011) 666.
  22. K.A. Michalow, A. Vital, A. Heel, T. Graule, F.A. Reifler, A. Ritter, M. Rekas, Photocatalytic activity of W-doped TiO2 nanopowders, Journal of Advanced Oxidation Technologies, 11 (2008) 56-64.
  23. G. Ramis, G. Busca, C. Cristiani, L. Lietti, P. Forzatti, F. Bregani, Characterization of tungsta-titania catalysts, Langmuir, 8 (1992) 1744-1749. https://doi.org/10.1021/la00043a010
  24. Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, S-scheme heterojunction photocatalyst, Chem, 6 (2020) 1543-1559. https://doi.org/10.1016/j.chempr.2020.06.010
  25. E. Mugunthan, M.B. Saidutta, P.E. Jagadeeshbabu, Visible-light assisted photocatalytic degradation of diclofenac using TiO2-WO3 mixed oxide catalysts, Environmental Nanotechnology, Monitoring & Management, 10 (2018) 322-330. https://doi.org/10.1016/j.enmm.2018.07.012
  26. W.A.E. Yazeed, A.I. Ahmed, Photocatalytic activity of mesoporous WO3/TiO2 nanocomposites for the photodegradation of methylene blue, Inorganic Chemistry Communications, 105 (2019) 102-111. https://doi.org/10.1016/j.inoche.2019.04.034
  27. W.H. Lee, C.W. Lai, S.B. Abd Hamid, One-step formation of WO3-loaded TiO2 nanotubes composite film for high photocatalytic performance, Materials, 8 (2015) 2139-2153. https://doi.org/10.3390/ma8052139
  28. H. Khan, D. Berk, Selenium modified oxalate chelated titania: characterization, mechanistic and photocatalytic studies, Applied Catalysis A: General, 505 (2015) 285-301. https://doi.org/10.1016/j.apcata.2015.05.030
  29. J.A. Mendoza, D.H. Lee, J.H. Kang, Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: effect of surface modification, Chemosphere, 182 (2017) 539-546. https://doi.org/10.1016/j.chemosphere.2017.05.069
  30. A. Chakib, A. Bekka, K. Mohamed, T. Wassila, J.A. Labrincha, M.F. Edelmannova, D.M. Tobaldi, Sol-gel synthesis of TiO2/WO3 and TiO2/WO3-graphene nanoparticles, investigation of their photocatalytic proprieties.
  31. A.M. Cant, F. Huang, X.L. Zhang, Y. Chen, Y.B. Cheng, R. Amal, Tailoring the conduction band of titanium oxide by doping tungsten for efficient electron injection in a sensitized photoanode, Nanoscale, 6 (2014) 3875-3880. https://doi.org/10.1039/C3NR05456J
  32. Y. Cui, Photocatalytic degradation of MO by complex nanometer particles WO3/TiO2, Rare Metals, 25 (2006) 649-653. https://doi.org/10.1016/S1001-0521(07)60007-2
  33. C. Shifu, C. Lei, G. Shen, C. Gengyu, The preparation of coupled WO3/TiO2 photocatalyst by ball milling, Powder Technology, 160 (2005) 198-202. https://doi.org/10.1016/j.powtec.2005.08.012
  34. J.S. Park, Improvement of nitrogen doping and visible-light photocatalytic activity of TiO2 by a ball milling process, Master's Thesis, Graduate School of Gangneung-Wonju National University, Gangwon-do, South Korea, (2010).
  35. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics, 6 (2012) 1-8. https://doi.org/10.1186/2251-7235-6-1
  36. S. Prabhu, L. Cindrella, O.J. Kwon, K. Mohanraju, Photoelectrochemical and photocatalytic activity of TiO2-WO3 heterostructures boosted by mutual interaction, Materials Science in Semiconductor Processing, 88 (2018) 10-19. https://doi.org/10.1016/j.mssp.2018.07.028
  37. N.A.R. Delgado, M.A.G. Pinilla, L.M. Trevino, L.H. Reyes, J.L.G. Mar, A.H. Ramirez, Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide, Journal of Hazardous Materials, 263 (2013) 36-44. https://doi.org/10.1016/j.jhazmat.2013.07.058
  38. B. Santara, B. Pal, P.K. Giri, Signature of strong ferromagnetism and optical properties of Co-doped TiO2 nanoparticles, Journal of Applied Physics, 110 (2011) 114322.
  39. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals, Journal of Physics D: Applied Physics, 33 (2000) 912.
  40. H. Perron, J. Vandenborre, C. Domain, R. Drot, J. Roques, E. Simoni, H. Catalette, Combined investigation of water sorption on TiO2 rutile (110) single crystal face: XPS vs. periodic DFT, Surface Science, 601 (2007) 518-527. https://doi.org/10.1016/j.susc.2006.10.015
  41. S. Bai, H. Liu, J. Sun, Y. Tian, S. Chen, J. Song, C.C. Liu, Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites, Applied Surface Science, 338 (2015) 61-68. https://doi.org/10.1016/j.apsusc.2015.02.103
  42. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A.A. Ghamdi, Heterojunction photocatalysts, Advanced Materials, 29 (2017) 1601694.
  43. L. Yang, Y. Xiao, S. Liu, Y. Li, Q. Cai, S. Luo, G. Zeng, Photocatalytic reduction of Cr (VI) on WO3-doped long TiO2 nanotube arrays in the presence of citric acid, Applied Catalysis B: Environmental, 94 (2010) 142-149. https://doi.org/10.1016/j.apcatb.2009.11.002
  44. Y.C. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki, TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties, Journal of the American Chemical Society, 130 (2008) 16154-16155. https://doi.org/10.1021/ja807106y
  45. H. Li, C.H. Wu, Y.C. Liu, S.H. Yuan, Z.X. Chiang, S. Zhang, R.J. Wu, Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor, Sensors and Actuators B: Chemical, 341 (2021) 130035.
  46. J. Gong, C. Yang, W. Pu, J. Zhang, Liquid phase deposition of tungsten-doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate, Chemical Engineering Journal, 167 (2011) 190-197. https://doi.org/10.1016/j.cej.2010.12.020
  47. J. Yang, X. Zhang, H. Liu, C. Wang, S. Liu, P. Sun, Y. Liu, Heterostructured TiO2/WO3 porous microspheres: preparation, characterization and photocatalytic properties, Catalysis Today, 201 (2013) 195-202. https://doi.org/10.1016/j.cattod.2012.03.008
  48. C. Yu, J.C. Yu, W. Zhou, K. Yang, WO3 coupled P-TiO2 photocatalysts with mesoporous structure, Catalysis Letters, 140 (2010) 172-183. https://doi.org/10.1007/s10562-010-0434-9
  49. A. Benoit, I. Paramasivam, Y.C. Nah, P. Roy, P. Schmuki, Decoration of TiO2 nanotube layers with WO3 nanocrystals for high-electrochromic activity, Electrochemistry Communications, 11 (2009) 728-732. https://doi.org/10.1016/j.elecom.2009.01.024
  50. T.L. Thompson, J.T. Yates, Monitoring hole trapping in photoexcited TiO2 (110) using a surface photoreaction, Journal of Physical Chemistry B, 109 (2005) 18230-18236. https://doi.org/10.1021/jp0530451
  51. V. Keller, P. Bernhardt, F. Garin, Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts, Journal of Catalysis, 215 (2003) 129-138. https://doi.org/10.1016/S0021-9517(03)00002-2
  52. C.W. Lai, S. Sreekantan, S.E.P. San, W. Krengvirat, Preparation and photo-electrochemical characterization of WO3-loaded TiO2 nanotube arrays via radio frequency sputtering, Electrochimica Acta, 77 (2012) 128-136. https://doi.org/10.1016/j.electacta.2012.05.092