References
- F. Riboni, M.V. Dozzi, M.C. Paganini, E. Giamello, E. Selli, Photocatalytic activity of TiO2-WO3 mixed oxides in formic acid oxidation, Catalysis Today, 287 (2017) 176-181. https://doi.org/10.1016/j.cattod.2016.12.031
- M.N. Magana, A.E. Gonzalez, L.M. Ix, S.C. Diaz, R. Gomez, Improved photocatalytic oxidation of arsenic (III) with WO3/TiO2 nanomaterials synthesized by the solgel method, Journal of Environmental Management, 282 (2021) 111602.
- V. Dutta, S. Sharma, P. Raizada, V.K. Thakur, A.A.P. Khan, V. Saini, P. Singh, An overview on WO3 based photocatalyst for environmental remediation, Journal of Environmental Chemical Engineering, 9 (2021) 105018.
- A. Wang, A. Sienkiewicz, P.R. Konieczna, E.K. Nejman, A.W. Morawski, Influence of modification of titanium dioxide by silane coupling agents on the photocatalytic activity and stability, Journal of Environmental Chemical Engineering, 8 (2020) 103917.
- X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, Photocatalytic activity of WOx-TiO2 under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 141 (2001) 209-217. https://doi.org/10.1016/S1010-6030(01)00446-4
- M. Desseigne, N. Dirany, V. Chevallier, M. Arab, Shape dependence of photosensitive properties of WO3 oxide for photocatalysis under solar light irradiation, Applied Surface Science, 483 (2019) 313-323. https://doi.org/10.1016/j.apsusc.2019.03.269
- A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews, 95 (1995) 735-758. https://doi.org/10.1021/cr00035a013
- H. Gao, P. Zhang, J. Hu, J. Pan, J. Fan, G. Shao, One-dimensional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation, Applied Surface Science, 391 (2017) 211-217. https://doi.org/10.1016/j.apsusc.2016.06.170
- L. Wang, B. Cheng, L. Zhang, J. Yu, In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction, Small, 17 (2021) 2103447.
- P. Raizada, V. Soni, A. Kumar, P. Singh, A.A.P. Khan, A.M. Asiri, V.H. Nguyen, Surface defect engineering of metal oxides photocatalyst for energy application and water treatment, Journal of Materiomics, 7 (2021) 388-418. https://doi.org/10.1016/j.jmat.2020.10.009
- A. Wanag, A. Sienkiewicz, P.R. Konieczna, E.K. Nejman, A.W. Morawski, Influence of modification of titanium dioxide by silane coupling agents on the photocatalytic activity and stability, Journal of Environmental Chemical Engineering, 8 (2020) 103917.
- F. Riboni, L.G. Bettini, D.W. Bahnemann, E. Selli, WO3-TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides, Catalysis Today, 209 (2013) 28-34. https://doi.org/10.1016/j.cattod.2013.01.008
- Y. Yamin, N. Keller, V. Keller, WO3-modified TiO2 nanotubes for photocatalytic elimination of methylethylketone under UVA and solar light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 245 (2012) 43-57. https://doi.org/10.1016/j.jphotochem.2012.06.021
- Y. Li, X. Zhai, Y. Liu, H. Wei, J. Ma, M. Chen, S. Wei, WO3-based materials as electrocatalysts for hydrogen evolution reaction, Frontiers of Materials, 7 (2020) 105.
- I. Paramasivam, Y.C. Nah, C. Das, N.K. Shrestha, P. Schmuki, WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity, Chemistry-A European Journal, 16(30) (2010) 8993-8997. https://doi.org/10.1002/chem.201000397
- A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 91 (2009) 397-405. https://doi.org/10.1016/j.apcatb.2009.06.005
- H. Khan, M.G. Rigamonti, G.S. Patience, D.C. Boffito, Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark, Applied Catalysis B: Environmental, 226 (2018) 311-323. https://doi.org/10.1016/j.apcatb.2017.12.049
- K.K. Akurati, A. Vital, J.P. Dellemann, K. Michalow, T. Graule, D. Ferri, A. Baiker, Flame-made WO3/TiO2 nanoparticles: relation between surface acidity, structure and photocatalytic activity, Applied Catalysis B: Environmental, 79 (2008) 53-62. https://doi.org/10.1016/j.apcatb.2007.09.036
- C. Byrne, R. Fagan, S. Hinder, D.E. McCormack, S.C. Pillai, New approach of modifying the anatase to anatase transition temperature in TiO2 photocatalysts, RSC Advances, 6 (2016) 95232-95238. https://doi.org/10.1039/C6RA19759K
- C.H. Shim, The effect of the operating variables on the batch ball milling, Prospectives of Industrial Chemistry, 3 (2000) 46-57.
- Y. Gao, J. Yin, G. Ren, H. Liu, A. Xing, Synthesis of high-activity TiO2/WO3 photocatalyst via environmentally friendly and microwave assisted hydrothermal process, Journal of the Chemical Society of Pakistan, 33 (2011) 666.
- K.A. Michalow, A. Vital, A. Heel, T. Graule, F.A. Reifler, A. Ritter, M. Rekas, Photocatalytic activity of W-doped TiO2 nanopowders, Journal of Advanced Oxidation Technologies, 11 (2008) 56-64.
- G. Ramis, G. Busca, C. Cristiani, L. Lietti, P. Forzatti, F. Bregani, Characterization of tungsta-titania catalysts, Langmuir, 8 (1992) 1744-1749. https://doi.org/10.1021/la00043a010
- Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, S-scheme heterojunction photocatalyst, Chem, 6 (2020) 1543-1559. https://doi.org/10.1016/j.chempr.2020.06.010
- E. Mugunthan, M.B. Saidutta, P.E. Jagadeeshbabu, Visible-light assisted photocatalytic degradation of diclofenac using TiO2-WO3 mixed oxide catalysts, Environmental Nanotechnology, Monitoring & Management, 10 (2018) 322-330. https://doi.org/10.1016/j.enmm.2018.07.012
- W.A.E. Yazeed, A.I. Ahmed, Photocatalytic activity of mesoporous WO3/TiO2 nanocomposites for the photodegradation of methylene blue, Inorganic Chemistry Communications, 105 (2019) 102-111. https://doi.org/10.1016/j.inoche.2019.04.034
- W.H. Lee, C.W. Lai, S.B. Abd Hamid, One-step formation of WO3-loaded TiO2 nanotubes composite film for high photocatalytic performance, Materials, 8 (2015) 2139-2153. https://doi.org/10.3390/ma8052139
- H. Khan, D. Berk, Selenium modified oxalate chelated titania: characterization, mechanistic and photocatalytic studies, Applied Catalysis A: General, 505 (2015) 285-301. https://doi.org/10.1016/j.apcata.2015.05.030
- J.A. Mendoza, D.H. Lee, J.H. Kang, Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: effect of surface modification, Chemosphere, 182 (2017) 539-546. https://doi.org/10.1016/j.chemosphere.2017.05.069
- A. Chakib, A. Bekka, K. Mohamed, T. Wassila, J.A. Labrincha, M.F. Edelmannova, D.M. Tobaldi, Sol-gel synthesis of TiO2/WO3 and TiO2/WO3-graphene nanoparticles, investigation of their photocatalytic proprieties.
- A.M. Cant, F. Huang, X.L. Zhang, Y. Chen, Y.B. Cheng, R. Amal, Tailoring the conduction band of titanium oxide by doping tungsten for efficient electron injection in a sensitized photoanode, Nanoscale, 6 (2014) 3875-3880. https://doi.org/10.1039/C3NR05456J
- Y. Cui, Photocatalytic degradation of MO by complex nanometer particles WO3/TiO2, Rare Metals, 25 (2006) 649-653. https://doi.org/10.1016/S1001-0521(07)60007-2
- C. Shifu, C. Lei, G. Shen, C. Gengyu, The preparation of coupled WO3/TiO2 photocatalyst by ball milling, Powder Technology, 160 (2005) 198-202. https://doi.org/10.1016/j.powtec.2005.08.012
- J.S. Park, Improvement of nitrogen doping and visible-light photocatalytic activity of TiO2 by a ball milling process, Master's Thesis, Graduate School of Gangneung-Wonju National University, Gangwon-do, South Korea, (2010).
- V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics, 6 (2012) 1-8. https://doi.org/10.1186/2251-7235-6-1
- S. Prabhu, L. Cindrella, O.J. Kwon, K. Mohanraju, Photoelectrochemical and photocatalytic activity of TiO2-WO3 heterostructures boosted by mutual interaction, Materials Science in Semiconductor Processing, 88 (2018) 10-19. https://doi.org/10.1016/j.mssp.2018.07.028
- N.A.R. Delgado, M.A.G. Pinilla, L.M. Trevino, L.H. Reyes, J.L.G. Mar, A.H. Ramirez, Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide, Journal of Hazardous Materials, 263 (2013) 36-44. https://doi.org/10.1016/j.jhazmat.2013.07.058
- B. Santara, B. Pal, P.K. Giri, Signature of strong ferromagnetism and optical properties of Co-doped TiO2 nanoparticles, Journal of Applied Physics, 110 (2011) 114322.
- W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals, Journal of Physics D: Applied Physics, 33 (2000) 912.
- H. Perron, J. Vandenborre, C. Domain, R. Drot, J. Roques, E. Simoni, H. Catalette, Combined investigation of water sorption on TiO2 rutile (110) single crystal face: XPS vs. periodic DFT, Surface Science, 601 (2007) 518-527. https://doi.org/10.1016/j.susc.2006.10.015
- S. Bai, H. Liu, J. Sun, Y. Tian, S. Chen, J. Song, C.C. Liu, Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites, Applied Surface Science, 338 (2015) 61-68. https://doi.org/10.1016/j.apsusc.2015.02.103
- J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A.A. Ghamdi, Heterojunction photocatalysts, Advanced Materials, 29 (2017) 1601694.
- L. Yang, Y. Xiao, S. Liu, Y. Li, Q. Cai, S. Luo, G. Zeng, Photocatalytic reduction of Cr (VI) on WO3-doped long TiO2 nanotube arrays in the presence of citric acid, Applied Catalysis B: Environmental, 94 (2010) 142-149. https://doi.org/10.1016/j.apcatb.2009.11.002
- Y.C. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki, TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties, Journal of the American Chemical Society, 130 (2008) 16154-16155. https://doi.org/10.1021/ja807106y
- H. Li, C.H. Wu, Y.C. Liu, S.H. Yuan, Z.X. Chiang, S. Zhang, R.J. Wu, Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor, Sensors and Actuators B: Chemical, 341 (2021) 130035.
- J. Gong, C. Yang, W. Pu, J. Zhang, Liquid phase deposition of tungsten-doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate, Chemical Engineering Journal, 167 (2011) 190-197. https://doi.org/10.1016/j.cej.2010.12.020
- J. Yang, X. Zhang, H. Liu, C. Wang, S. Liu, P. Sun, Y. Liu, Heterostructured TiO2/WO3 porous microspheres: preparation, characterization and photocatalytic properties, Catalysis Today, 201 (2013) 195-202. https://doi.org/10.1016/j.cattod.2012.03.008
- C. Yu, J.C. Yu, W. Zhou, K. Yang, WO3 coupled P-TiO2 photocatalysts with mesoporous structure, Catalysis Letters, 140 (2010) 172-183. https://doi.org/10.1007/s10562-010-0434-9
- A. Benoit, I. Paramasivam, Y.C. Nah, P. Roy, P. Schmuki, Decoration of TiO2 nanotube layers with WO3 nanocrystals for high-electrochromic activity, Electrochemistry Communications, 11 (2009) 728-732. https://doi.org/10.1016/j.elecom.2009.01.024
- T.L. Thompson, J.T. Yates, Monitoring hole trapping in photoexcited TiO2 (110) using a surface photoreaction, Journal of Physical Chemistry B, 109 (2005) 18230-18236. https://doi.org/10.1021/jp0530451
- V. Keller, P. Bernhardt, F. Garin, Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts, Journal of Catalysis, 215 (2003) 129-138. https://doi.org/10.1016/S0021-9517(03)00002-2
- C.W. Lai, S. Sreekantan, S.E.P. San, W. Krengvirat, Preparation and photo-electrochemical characterization of WO3-loaded TiO2 nanotube arrays via radio frequency sputtering, Electrochimica Acta, 77 (2012) 128-136. https://doi.org/10.1016/j.electacta.2012.05.092