DOI QR코드

DOI QR Code

열플라즈마를 이용한 탄소 나노 물질의 합성 및 특성에 관한 연구

A Study on the Synthesis and Characteristics of Carbon Nanomaterials by Thermal Plasma

  • 강성표 (원광대학교 화학공학과) ;
  • 김태희 (원광대학교 화학공학과)
  • Seong-Pyo Kang (Department of Chemical Engineering, Wonkwang University) ;
  • Tae-Hee Kim (Department of Chemical Engineering, Wonkwang University)
  • 투고 : 2024.04.11
  • 심사 : 2024.05.21
  • 발행 : 2024.06.30

초록

Physical properties of carbon nanomaterials are dependent on their nanostructures and they are modified by diverse synthesis methods. Among them, thermal plasma method stands out for synthesizing carbon nanomaterials by controlling chemical and physical reactions through various design and operating conditions such as plasma torch type, plasma gas composition, power capacity, raw material injection rate, quenching rate, kinds of precursors, and so on. The method enables the production of carbon nanomaterials with various nanostructures and characteristics. The high-energy integration at high-temperature region thermal plasma to the precursor is possible to completely vaporize precursors, and the vaporized materials are rapidly condensed to the nanomaterials due to the rapid quenching rate by sharp temperature gradient. The synthesized nanomaterials are averagely in several nanometers to 100 nm scale. Especially, the thermal plasma was validated to synthesize low-dimensional carbon nanomaterials, carbon nanotubes and graphene, which hold immense promise for future applications.

키워드

참고문헌

  1. M.K. Seo, H.W. Seo, J.Y. Park, Manufacturing method of carbon fibers and their application fields, Polymer Science and Technology, 21 (2010) 130-140. 
  2. M.M.J. Treacy, R.J. Nicholas, A.L. Rinzler, R.E. Smalley, Exceptionally high young's modulus observed for individual carbon nanotubes, Nature, 381 (1996) 678-680. 
  3. E.W. Wong, P.D. Hagstrand, R.E. Smalley, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 277 (1997) 1971-1975. 
  4. J.I. Lee, S.H. Lee, K.T. Kim, Technical status of carbon nanotubes composites, Korean Chemical Engineering Research, 46 (2008) 7-14. 
  5. J.W. Jiang, D. Tomanek, Young's modulus of graphene: a molecular dynamics study, Physical Review B, 80 (2009) 113405. 
  6. C. Gomez-Navarro, M. Burghard, K. Kern, Elastic properties of chemically derived single graphene sheets, Nano Letters, 8 (2008) 2045-2049. 
  7. K.I. Bolotin, K.J. Sikes, Z. Jiang, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146 (2008) 351-355. 
  8. O.K. Park, C. Lee, J.H. Kim, A review of graphene-based polymer nanocomposites, Polymer Science and Technology, 22 (2011) 467-473. 
  9. J.B. Donnet, Carbon black: science and technology, Routledge, (2018). 
  10. S. Samal, K.G. Subramaniam, Thermal plasma technology: the prospective future in material processing, Journal of Cleaner Production, 142 (2017) 3131-3150. 
  11. H.S. Uhm, S. Lee, Atmospheric plasma and its applications, Journal of the Korean Vacuum Society, 15 (2006) 117-138. 
  12. J. Abrahamson, Graphite sublimation temperatures, carbon arcs and crystallite erosion,, Carbon, 12 (1974) 111-118. 
  13. K.S. Kim, T.H. Kim, Nanofabrication by thermal plasma jets: from nanoparticles to low-dimensional nanomaterials, Journal of Applied Physics, 125 (2019) 070901. 
  14. G.S. Kim, S.J. Kim, Nano-technology applications of plasma devices, Ingenium, 11 (2004) 59-65.
  15. S.P. Kang, H.S. Uhm, Suface modification of materials using thermal plasma, Journal of Surface Science and Engineering, 55 (2022) 308-318. 
  16. R.O. Loutfy, T.A. Khattab, A.H. ElShazly, RF plasma method for production of single walled carbon nanotubes, U.S. Patent, No. 7,052,667 (2006). 
  17. S. Mauro, Device and method for production of carbon nano-tubes, fullerene and their derivatives, United States Patent US,US7125525B2, 24 Oct 2006. 
  18. O. Smiljanic, B.L. Stansfield, Method and apparatus for producing single-wall carbon nanotubes, United States Patent US, US20080124482A1,29 May 2008. 
  19. L. Szymanski, P. Blazej, Synthesis of carbon nanotubes in thermal plasma reactor at atmospheric pressure, Nanomaterials, 7 (2017) 45. 
  20. K.S. Kim, S.B. Lee, Synthesis of single-walled carbon nanotubes by induction thermal plasma, Nano Research, 2 (2009) 800-817. 
  21. J.H. Hahn, J. Lee, New continuous gas-phase synthesis of high purity carbon nanotubes by a thermal plasma jet, Carbon, 42 (2004) 877-883. 
  22. J.A. Dean, Lange's handbook of chemistry, (1999) 1-1291. 
  23. C. Wang, L.L. Zhang, Effects of buffer gases on graphene flakes synthesis in thermal plasma process at atmospheric pressure, Nanomaterials, 10 (2020) 309. 
  24. G. Borand, A. Righi, Structural characterization of graphene nanostructures produced via arc discharge method, Ceramics International, 47 (2021) 8044- 8052. 
  25. X. Chen, Z.L. Wang, The morphological transformation of carbon materials from nanospheres to graphene nanoflakes by thermal plasma, Carbon, 155 (2019) 521-530. 
  26. R. Pristavita, T. Minea, Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology, Plasma Chemistry and Plasma Processing, 30 (2010) 267-279. 
  27. H.M. Yang, W.K. Nam, D.W Park, Production of nanosized carbon black from hydrocarbon by plasma, Journal of Nanoscience and Nanotechnology, 7 (2007) 3744-3749.