DOI QR코드

DOI QR Code

Simulation Study on the Production of Methanol from CO2 Emissions in the Cement Industry

시멘트 산업에서 배출한 CO2로부터 메탄올 생산에 대한 공정 시뮬레이션 연구

  • DANBEE HAN (Division of Construction Environment Energy, College of Innovative Engineering, The University of Suwon) ;
  • YOUNGSOON BAEK (Division of Construction Environment Energy, College of Innovative Engineering, The University of Suwon) ;
  • BYEONGIL LIM (Wooyang HC)
  • 한단비 (수원대학교 혁신공과대학 건설환경에너지공학부 환경에너지공학) ;
  • 백영순 (수원대학교 혁신공과대학 건설환경에너지공학부 환경에너지공학) ;
  • 임병일 (우양에이치씨(주))
  • Received : 2024.04.03
  • Accepted : 2024.04.25
  • Published : 2024.06.30

Abstract

The cement industry emits a large amount of greenhouse gases compared to other industries, with about 60% of CO2 emissions from the decarbonation of limestone and about 40% from the combustion of fossil fuels. Therefore, the cement industry needs to reduce greenhouse gases through carbon capture, utilization, and storage technology. Capturing CO2 and synthesizing it into methanol is feasible and also useful as raw material for the chemical industry and as marine fuel. In this study, We aimed to produce methanol from syngas produced by capturing CO2 emissions. Process simulations were performed under various conditions such as syngas ratio, temperature, and pressure for the production of synthesis gas and methanol, and the results showed that the optimal amount of methanol production at a synthesis gas ratio of 2.03.

Keywords

Acknowledgement

본 연구는 산업통상자원부 신산업진출 사업재편 핵심기술개발사업(P0020504)과 산업통상자원부 에너지수요관리 핵심기술개발사업(20212010200100)의 일환으로 수행되었습니다.

References

  1. S. Jeong, "The cement industry will also contribute to '2050 net-zero'", Technology & Innovation, Vol. 448, 2021, pp. 50-53. Retrieved from http://203.234.181.180/webzine/202107.pdf. 107.pdf
  2. A. Buljan, "Danish consortium accelerates offshore windpowered clean fuel project, eyes green jet fuel production by 2025", OffshoreWIND.biz, 2022. Retrieved from https://www.offshorewind.biz/2022/02/04/danish-consortium-accelerates-offshore-wind-powered-clean-fuel-project-eyes-green-jet-fuel-production-by-2025/.
  3. M. Prasanna, N. Logeshwaran, S. Ramakrishnan, and D. J. Yoo, "Metallic 1T-N-WS2/WO3 heterojunctions featuring interface-engineered Cu-S configuration for selective electr ochemical CO2 reduction reaction", Nano Micro Small, Vol. 20, No. 4, 2024, pp. 2306165, doi: https://doi.org/10.1002/smll.202306165.
  4. J. Kim, Y. Yoo, M. Seo, J. Baek, and S. Kim, "Performance analysis of adiabatic reactor in thermochemical carbon dioxide methanation process for carbon neutral methane production", Journal of Hydrogen and New Energy, Vol. 34, No. 3, 2023, pp. 316-326, doi: https://doi.org/10.7316/JHNE.2023.34.3.316.
  5. A. Nemmour, A. Inayat, I. Janajreh, and C. Ghenai, "Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: a literature review", International Journal of Hydrogen Energy, Vol. 48, No. 75, 2023, pp. 29011-29033, doi: https://doi.org/10.1016/j.ijhydene.2023.03.240.
  6. A. Ullah, N. A. Hashim, M. F. Rabuni, and M. U. M. Junaidi, "A review on methanol as a clean energy carrier: roles of zeolite in improving production efficiency", Energies, Vol. 16, No. 3, 2023, pp. 1482, doi: https://doi.org/10.3390/en16031482.
  7. M. Minutillo and A. Perna, "A novel approach for treatment of CO2 from fossil fired power plants, part A: the integrated systems ITRPP", International Journal of Hydrogen Energy, Vol. 34, No. 9, 2009, pp. 4014-4020, doi: https://doi.org/10.1016/j.ijhydene.2009.02.069.
  8. W. Cho, T. Song, A. Mitsos, J. T. McKinnon, G. H. Ko, J. E. Tolsma, D. Denholm, and T. Park, "Optimal design and operation of a natural gas tri-reforming reactor for DME synthesis", Catalysis Today, Vol. 139, No. 4, 2009, pp. 261-267, doi: https://doi.org/10.1016/j.cattod.2008.04.051.
  9. Y. Zhang, J. Cruz, S. Zhang, H. H. Lou, and T. J. Benson, "Process simulation and optimization of methanol production coupled to tri-reforming process", International Journal of Hydrogen Energy, Vol. 38, No. 31, 2013, pp. 13617-13630, doi: https://doi.org/10.1016/j.ijhydene.2013.08.009.
  10. L. Yang and X. Ge, "Chapter three - biogas and syngas upgrading", Advances in Bioenergy, Vol. 1, 2016, pp. 125-188, doi: https://doi.org/10.1016/bs.aibe.2016.09.003.
  11. G. Liu, H. Hagelin-Weaver, and B. Welt, "A concise review of catalytic synthesis of methanol from synthesis gas", Waste, Vol. 1, No. 1, 2023, pp. 228-248, doi: https://doi.org/10.3390/waste1010015.
  12. A. Arman, F. Y. Hagos, A. A. Abdullah, R. Mamat, A. R. A. Aziz, and C. K. Cheng, "Syngas production through steam and CO2 reforming of methane over Ni-based catalyst-a review", IOP Conference Series: Materials Science and Engineering, Vol. 736, 2020, pp. 042032, doi: https://doi.org/10.1088/1757-899X/736/4/042032.
  13. A. Di Giuliano and K. Gallucci, "Sorption enhanced steam methane reforming based on nickel and calcium looping: a review", Chemical Engineering and Processing - Process Intensification, Vol. 130, 2018, pp. 240-252, doi: https://doi.org/10.1016/j.cep.2018.06.021.
  14. Y. Sun, T. Ritchie, S. S. Hla, S. McEvoy, W. Stein, and J. H. Edwards, "Thermodynamic analysis of mixed and dry reforming of methane for solar thermal applications", Journal of Natural Gas Chemistry, Vol. 20, No. 6, 2011, pp. 568-576, doi: https://doi.org/10.1016/S1003-9953(10)60235-6.
  15. S. C. Marie-Rose, A. L. Perinet, and J. M. Lavoie, "Conversion of non-homogeneous biomass to ultraclean syngas and catalytic conversion to ethanol", Biofuel's Engineering Process Technology, 2011, doi: https://doi.org/10.5772/20032.
  16. J. Q. Zeng, N. Tsubaki, and K. Fujimoto, "The promoting effect of alcohols in a new process of low-temperature synthesis of methanol from CO/CO2/H2", Fuel, Vol. 81, No. 1, 2002, pp. 125-127, doi; https://doi.org/10.1016/S0016-2361(01)00123-5.