DOI QR코드

DOI QR Code

Efficacy of plasma treatment for surface cleansing and osseointegration of sandblasted and acid-etched titanium implants

  • Gang-Ho Bae (Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University) ;
  • Won-Tak Cho (Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University) ;
  • Jong-Ho Lee (Research and Development Institute, PNUADD Co., Ltd.) ;
  • Jung-Bo Huh (Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University)
  • Received : 2024.02.22
  • Accepted : 2024.06.09
  • Published : 2024.06.30

Abstract

PURPOSE. This study was conducted to evaluate the effects of plasma treatment of sandblasted and acid-etched (SLA) titanium implants on surface cleansing and osseointegration in a beagle model. MATERIALS AND METHODS. For morphological analysis and XPS analysis, scanning electron microscope and x-ray photoelectron spectroscopy were used to analyze the surface topography and chemical compositions of implant before and after plasma treatment. For this animal experiment, twelve SLA titanium implants were divided into two groups: a control group (untreated implants) and a plasma group (implants treated with plasma). Each group was randomly located in the mandibular bone of the beagle dog (n = 6). After 8 weeks, the beagle dogs were sacrificed, and volumetric analysis and histometric analysis were performed within the region of interest. RESULTS. In morphological analysis, plasma treatment did not alter the implant surface topography or cause any physical damage. In XPS analysis, the atomic percentage of carbon at the inspection point before the plasma treatment was 34.09%. After the plasma treatment, it was reduced to 18.74%, indicating a 45% reduction in carbon. In volumetric analysis and histometric analysis, the plasma group exhibited relatively higher mean values for new bone volume (NBV), bone to implant contact (BIC), and inter-thread bone density (ITBD) compared to the control group. However, there was no significant difference between the two groups (P > .05). CONCLUSION. Within the limits of this study, plasma treatment effectively eliminated hydrocarbons without changing the implant surface.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1A2C1004927), and was supported by the Starting Growth Technological R&D Program (TIPS Program, (No. S3282623) funded by the Ministry of SMEs and Startups (MSS, Korea) in 2022.

References

  1. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Grobe A, Heiland M, Ebker T. Impact of dental implant surface modifications on osseointegration. Biomed Res Int 2016;2016:6285620. 
  2. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983;50:399-410. 
  3. Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron 2005;36:630-44. 
  4. Pandey C, Rokaya D, Bhattarai BP. Contemporary concepts in osseointegration of dental implants: a review. Biomed Res Int 2022;2022:6170452. 
  5. Alghamdi HS, Jansen JA. The development and future of dental implants. Dent Mater J 2020;39:167-72. 
  6. Zhu G, Wang G, Li JJ. Advances in implant surface modifications to improve osseointegration. Mater Adv 2021;2:6901-27. 
  7. Silva RCS, Agrelli A, Andrade AN, Mendes-Marques CL, Arruda IRS, Santos LRL, Vasconcelos NF, Machado G. Titanium dental implants: an overview of applied nanobiotechnology to improve biocompatibility and prevent infections. Materials 2022;15:3150. 
  8. Branemark PI, Zarb GA, Albrektsson T. Tissue-integrated prostheses: osseointegration in clinical dentistry. 1st ed. Chicago: Quintessence. 1985. p. 117-28. 
  9. Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res 2011;22:349-56. 
  10. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. 
  11. Kligman S, Ren Z, Chung CH, Perillo MA, Chang YC, Koo H, Zheng Z, Li C. The impact of dental implant surface modifications on osseointegration and biofilm formation. J Clin Med 2021;10:1641. 
  12. Sayin Ozel G, Inan O, Secilmis Acar A, Alniacik Iyidogan G, Dolanmaz D, Yildirim G. Stability of dental implants with sandblasted and acid-etched (SLA) and modified (SLActive) surfaces during the osseointegration period. J Dent Res Dent Clin Dent Prospects 2021;15:226-31. 
  13. Velasco-Ortega E, Ortiz-Garcia I, Jimenez-Guerra A, Nunez-Marquez E, Moreno-Munoz J, Rondon-Romero JL, Cabanillas-Balsera D, Gil J, Munoz-Guzon F, Monsalve-Guil L. Osseointegration of sandblasted and acid-etched implant surfaces. a histological and histomorphometric study in the rabbit. Int J Mol Sci 2021;22:8507. 
  14. Bornstein MM, Wittneben JG, Bragger U, Buser D. Early loading at 21 days of non-submerged titanium implants with a chemically modified sandblasted and acid-etched surface: 3-year results of a prospective study in the posterior mandible. J Periodontol 2010;81:809-18. 
  15. Buser D, Janner SF, Wittneben JG, Bragger U, Ramseier CA, Salvi GE. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res 2012;14:839-51. 
  16. Nobles KP, Janorkar AV, Williamson RS. Surface modifications to enhance osseointegration-Resulting material properties and biological responses. J Biomed Mater Res B Appl Biomater 2021;109:1909-23. 
  17. Att W, Hori N, Takeuchi M, Ouyang J, Yang Y, Anpo M, Ogawa T. Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. Biomaterials 2009;30:5352-63. 
  18. Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, Ogawa T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 2009;30:1015-25. 
  19. Iwasa F, Tsukimura N, Sugita Y, Kanuru RK, Kubo K, Hasnain H, Att W, Ogawa T. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photo-functionalized titanium. Int J Nanomedicine 2011;6:1327-41. 
  20. Lee JH, Ogawa T. The biological aging of titanium implants. Implant Dent 2012;21:415-21. 
  21. Takeuchi M, Sakamoto K, Martra G, Coluccia S, Anpo M. Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface. J Phys Chem B 2005;109:15422-8. 
  22. Ogawa T. Ultraviolet photofunctionalization of titanium implants. Int J Oral Maxillofac Implants 2014;29:e95-102. 
  23. Wu C, Yang M, Ma K, Zhang Q, Bai N, Liu Y. Improvement implant osseointegration through nonthermal Ar/O2 plasma. Dent Mater J 2023;42:461-8. 
  24. Dong Y, Long L, Zhang P, Yu D, Wen Y, Zheng Z, Wu J, Chen W. A chair-side plasma treatment system for rapidly enhancing the surface hydrophilicity of titanium dental implants in clinical operations. J Oral Sci 2021;63:334-40. 
  25. Compton KT, Langmuir I. Electrical discharges in gases. Part I. Survey of fundamental processes. Rev Mod Phys 1930;2:123-242. 
  26. Domonkos M, Ticha P, Trejbal J, Demo P. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Appl Sci 2021;11:4809. 
  27. Fridman A, Chirokov A, Gutsol A. Non-thermal atmospheric pressure discharges. J Phys D Appl Phys 2005;38:1-24. 
  28. Kogelschatz U. Atmospheric-pressure plasma technology. Plasma Phys Control Fusion 2004;46:63-75. 
  29. Tominami K, Kanetaka H, Sasaki S, Mokudai T, Kaneko T, Niwano Y. Cold atmospheric plasma enhances osteoblast differentiation. PLoS One 2017;12:e0180507. 
  30. Kwon JS, Kim YH, Choi EH, Kim KN. The effects of non-thermal atmospheric pressure plasma jet on attachment of osteoblast. Curr Appl Phys 2013;13:S42-7. 
  31. Choi SH, Jeong WS, Cha JY, Lee JH, Yu HS, Choi EH, Kim KM, Hwang CJ. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium. Sci Rep 2016;6:33421. 
  32. Naujokat H, Harder S, Schulz LY, Wiltfang J, Florke C, Acil Y. Surface conditioning with cold argon plasma and its effect on the osseointegration of dental implants in miniature pigs. J Craniomaxillofac Surg 2019;47:484-90. 
  33. Lee EJ, Kwon JS, Uhm SH, Song DH, Kim YH, Choi EH, Kim KN. The effects of non-thermal atmospheric pressure plasma jet on cellular activity at SLA-treated titanium surfaces. Curr Appl Phys 2013;13:S36-41. 
  34. Lee H, Jeon HJ, Jung A, Kim J, Kim JY, Lee SH, Kim H, Yeom MS, Choe W, Gweon B, Lim Y. Improvement of osseointegration efficacy of titanium implant through plasma surface treatment. Biomed Eng Lett 2022;12:421-32. 
  35. Nevins M, Chen CY, Parma-Benfenati S, Kim DM. Gas Plasma treatment improves titanium dental implant osseointegration-a preclinical in vivo experimental study. Bioengineering 2023;10:1181. 
  36. Mavrogenis AF, Papagelopoulos PJ, Babis GC. Osseointegration of cobalt-chrome alloy implants. J Long Term Eff Med Implants 2011;21:349-58. 
  37. Minamikawa H, Att W, Ikeda T, Hirota M, Ogawa T. Long-term progressive degradation of the biological capability of titanium. Materials 2016;9:102. 
  38. Funato A, Yamada M, Ogawa T. Success rate, healing time, and implant stability of photofunctionalized dental implants. Int J Oral Maxillofac Implants 2013;28:1261-71. 
  39. Ueno T, Yamada M, Suzuki T, Minamikawa H, Sato N, Hori N, Takeuchi K, Hattori M, Ogawa T. Enhancement of bone-titanium integration profile with UV-photo-functionalized titanium in a gap healing model. Biomaterials 2010;31:1546-57. 
  40. Suzuki T, Hori N, Att W, Kubo K, Iwasa F, Ueno T, Maeda H, Ogawa T. Ultraviolet treatment overcomes time-related degrading bioactivity of titanium. Tissue Eng Part A 2009;15:3679-88. 
  41. Tsukimura N, Yamada M, Iwasa F, Minamikawa H, Att W, Ueno T, Saruwatari L, Aita H, Chiou WA, Ogawa T. Synergistic effects of UV photofunctionalization and micro-nano hybrid topography on the biological properties of titanium. Biomaterials 2011;32:4358-68. 
  42. Canullo L, Genova T, Tallarico M, Gautier G, Mussano F, Botticelli D. Plasma of argon affects the earliest biological response of different implant surfaces: an in vitro comparative study. J Dent Res 2016;95:566-73. 
  43. Guo L, Zou Z, Smeets R, Kluwe L, Hartjen P, Cacaci C, Gosau M, Henningsen A. Time dependency of non-thermal oxygen plasma and ultraviolet irradiation on cellular attachment and mrna expression of growth factors in osteoblasts on titanium and zirconia surfaces. Int J Mol Sci 2020;21:8598. 
  44. Lee JH, Jeong WS, Seo SJ, Kim HW, Kim KN, Choi EH, Kim KM. Non-thermal atmospheric pressure plasma functionalized dental implant for enhancement of bacterial resistance and osseointegration. Dent Mater 2017;33:257-70. 
  45. Yoo EM, Uhm SH, Kwon JS, Choi HS, Choi EH, Kim KM, Kim KN. The study on inhibition of planktonic bacterial growth by non-thermal atmospheric pressure plasma jet treated surfaces for dental application. J Biomed Nanotechnol 2015;11:334-41. 
  46. Lee MJ, Kwon JS, Jiang HB, Choi EH, Park G, Kim KM. The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure. Sci Rep 2019;9:1938.