DOI QR코드

DOI QR Code

An Experimental Study to Predict the Concentration of Moving Tire and Road Wear Particles from Road to Ocean Environment

도로에서 해양 환경까지 이동하는 타이어 마모입자의 농도를 예측하기 위한 실험적 연구

  • Tae-Woo Kang (R&D Center, Kumho Tire) ;
  • Won-Hyun Ji (Department of E&CE Fusion Technology, Hoseo University)
  • 강태우 (금호타이어 중앙연구소) ;
  • 지원현 (호서대학교 에너지기후환경융합기술학과)
  • Received : 2024.05.17
  • Accepted : 2024.06.04
  • Published : 2024.06.30

Abstract

In this study, sample collection and quantification analysis of Tire and Road Wear Particles (TRWP) from the road surface were conducted to predict the amount of TRWP generated on the road surface moving by environmental compartment depending on rainfall intensity. Samples were collected from TRWP remaining on the road surface two days after the 3 days average rainfall (0-60 mm/day) occurred and the road surface was completely dry. Only TRWP were separated from the collected samples through size and density separation, and the difference in the content of TRWP remaining on the road surface after rainfall was based on the value of 60.2 g o f TRWP o n a day witho ut rain (0 mm/day). By calculating, it was co nfirmed that 0-49.4 g o f TRWP can mo ve to the environmental compartment depending on the intensity of rainfall. In addition, it was confirmed that when the rainfall intensity was 60 mm/day, the amount of TRWP moving to each environmental section was 3.75 times higher compared to 5 mm/day, and using the results of previous research, the total amount of TRWP that can be transported to the environmental compartment by rainfall from the domestic road environment annually is 9,592 tons, and 288 tons of this can be affected by marine microplastics. However, this study has limitations in terms of limited space and predicted results, but it would like to mention the need to improve the domestic road environment and sewage treatment system to reduce TRWP. In the future, we plan to conduct sample collection and concentration analysis studies of TRWP in real environmental compartments to verify the results of this study.

본 연구에서는 노면에서 생성된 타이어 마모입자가 강우 강도에 따라 환경 구획별로 이동하는 양을 예측하고자, 도로 노면에서 타이어 마모입자의 샘플 포집과 정량화 분석 연구를 수행했다. 샘플 포집은 3일 평균 강우(0-60 mm/day) 발생 후 도로 노면이 완전히 건조된 2일 후, 도로 노면에 남아있는 타이어 마모입자의 샘플을 포집했다. 포집된 샘플은 크기와 밀도 분리를 통해 타이어 마모입자만을 분리했고, 강우가 없는 날(0 mm/day)의 타이어 마모입자 60.2 g 값을 기준으로 강우 이후 노면에 남아있는 타이어 마모입자의 함량의 차이를 산출하면, 강우 강도에 따라 0-49.4 g의 타이어 마모입자가 환경 구획으로 이동할 수 있는 것으로 확인했다. 또한, 강우 강도가 60 mm/day 일 때 5 mm/day와 비교해 타이어 마모입자의 환경 구획별 이동하는 양이 3.75배 높음을 확인했고, 선행 연구 결과를 활용하여 연간 국내 도로 환경에서 강우에 의해 환경 구획으로 이동 가능한 타이어 마모입자의 총량은 9,592 ton이며, 이 중 288 ton이 해양 미세플라스틱으로 영향을 줄 수 있다는 연구 결과를 도출했다. 단, 본 연구는 한정적 공간과 예측된 결과란 한계가 있으나, 타이어 마모입자의 저감을 위해서 국내 도로 환경과 하수 처리시스템 개선의 필요성을 언급하고자 한다. 향후 본 연구 결과의 검증을 위해 실제 환경 구획에서 샘플 포집과 타이어 마모입자의 농도 분석 연구를 수행할 계획이다.

Keywords

Acknowledgement

본 연구는 2023년도 중소벤처기업부의 기술개발사업 지원에 의한 연구로 수행되었습니다(과제번호 : RS-2023-00258092).

References

  1. Adachi, K., Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust, Environment InterNational, 30(8), 1009-1017.
  2. Borrelle, S.B., Ringma, J., Law, K.L., Monnahan, C.C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G.H., Hilleary, M.A., Eriksen, M., Possingham, H.P., De Frond, H., Gerber, L.R., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes, M., Rochman, C.M. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution, Science, 369(6510), 1515-1518.
  3. Camatini, M., Crosta, G.F., Dolukhanyan, T., Sung, C., Giuliani, G., Corbetta, G.M., Cencetti, G.M., Regazzoni, C. (2001). Microcharacterization and identification of tire debris in heterogeneous laboratory and environmental specimens, Materials Characterization, 46(4), 271-283.
  4. Chamas, A., Moon, H.J., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L., Suh, S.W. (2020). Degradation rates of plastics in the environment, ACS Sustainable Chemistry & Engineering, 8(9), 3494-3511.
  5. Hartmann, N.B., Huffer, T., Thompson, R.C., Hassellov, M., Verschoor, A., Daugaard, A.E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M.P., Hess, M.C., Ivleva, N.P., Ivleva, A.L., Wagner, M. (2019), Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris, Environmental Science & Technology, 53(3), 1039-1047.
  6. Hermabessiere, L., Dehaut, A., Paul-Pont, I., Lacroix, C., Jezequel, R., Soudant, P., Duflos, G. (2017). Occurrence and effects of plastic additives on marine environments and organisms: a review, Chemosphere, 182, 781-793.
  7. Jung, U.Y., Choi, S.S. (2022). Classification and characterization of tire-road wear particles in road dust by density, Polymer, 14(5), 1005.
  8. Kang, T.W., Kim, H.J. (2021). A basic study on the generation of tire & road wear particles by differences in tire wear performance, Journal of the Korean Recycled Construction Resources Institute, 9(4), 561-568.
  9. Kang, T.W., Kim, H.J. (2022). A study on the collection and analysis of tire and road wear particles(TRWPs) as fine dust generated on the roadside, Journal of the Korean Recycled Construction Resources Institute, 10(3), 293-299.
  10. Kang, T.W., Kim, H.J. (2023a). An experimental study on fine dust emissions near special modified asphalt pavement and conventional asphalt pavement, Journal of the Korean Recycled Construction Resources Institute, 11(3), 282-288.
  11. Kang, T.W., Kim, H.J. (2023b). An experimental study on the component analysis and variation in concentration of tire and road wear particles collected from the roadside, Sustainability, 15(17), 12815.
  12. Klockner, P., Reemtsma, T., Wagner, S. (2021a). The diverse metal composition of plastic items and its implications, Science of the Total Environment, 764, 142870.
  13. Klockner, P., Seiwert, B., Wagner, S., Reemtsma, T. (2021b). Organic markers of tire and road wear particles in sediments and soils: transformation products of major antiozonants as promising candidates, Environmental Science & Technology, 55(17), 11723-11732.
  14. Knight, L.J., Parker-Jurd, F.N., Al-Sid-Cheikh, M., Thompson, R.C. (2020). Tyre wear particles: an abundant yet widely unreported microplastic?, Environmental Science and Pollution Research, 27, 18345-18354.
  15. Kovochich, M., Liong, M., Parker, J.A., Oh, S.C., Lee, J.P., Xi, L., Kreider, M.L., Unice, K.M. (2021). Chemical mapping of tire and road wear particles for single particle analysis. Science of the Total Environment, 757, 144085.
  16. Kreider, M.L., Panko, J.M., McAtee, B.L., Sweet, L.I., Finley, B.L. (2010). Physical and chemical characterization of tire-related particles: comparison of particles generated using different methodologies, Science of the Total Environment, 408(3), 652-659.
  17. Liu, F., Olesen, K.B., Borregaard, A.R., Vollertsen, J. (2019). Microplastics in urban and highway stormwater retention ponds. Science of the Total Environment, 671, 992-1000.
  18. MacLeod, M., Arp, H.P.H., Tekman, M.B., Jahnke, A. (2021). The global threat from plastic pollution, Science, 373(6550), 61-65.
  19. Mattsson, K., de Lima, J.A., Wilkinson, T., Jarlskog, I., Ekstrand, E., Skold, Y.A., Gustafsson, M., Hassellov, M. (2023). Tyre and road wear particles from source to sea, Microplastics and Nanoplastics, 3(1), 14.
  20. Olubusoye, B.S., Cizdziel, J.V., Bee, M., Moore, M.T., Pineda, M., Yargeau, V., Bennett, E.R. (2023). Toxic tire wear compounds (6PPD-Q and 4-ADPA) detected in airborne particulate matter along a highway in mississippi, USA, Bulletin of Environmental Contamination and Toxicology, 111(6), 68.
  21. Ozaki, H., Watanabe, I., Kuno, K. (2004). Investigation of the heavy metal sources in relation to automobiles, Water, Air, and Soil Pollution, 157, 209-223.
  22. Rasmussen, L.A., Liu, F., Klemmensen, N.D.R., Lykkemark, J., Vollertsen, J. (2024). Retention of microplastics and tyre wear particles in stormwater ponds, Water Research, 248, 120835.
  23. Rausch, J., Jaramillo-Vogel, D., Perseguers, S., Schnidrig, N., Grobety, B., Yajan, P. (2022). Automated identification and quantification of tire wear particles (TWP) in airborne dust: SEM/EDX single particle analysis coupled to a machine learning classifier, Science of The Total Environment, 803, 149832.
  24. Rodland, E.S., Gustafsson, M., Jaramillo-Vogel, D., Jarlskog, I., Muller, K., Rauert, C., Rausch, J., Wagner, S. (2023). Analytical challenges and possibilities for the quantification of tire-road wear particles, TrAC Trends in Analytical Chemistry, 165, 117121.
  25. Rosso, B., Gregoris, E., Litti, L., Zorzi, F., Fiorini, M., Bravo, B., Barbante, C., Gambaro, A., Corami, F. (2023). Identification and quantification of tire wear particles by employing different cross-validation techniques: FTIR-ATR Micro-FTIR, Pyr-GC/MS, and SEM, Environmental Pollution, 326, 121511.
  26. Tamis, J.E., Koelmans, A.A., Dr ge, R., Kaag, N.H., Keur, M.C., Tromp, P.C., Jongbloed, R.H. (2021). Environmental risks of car tire microplastic particles and other road runoff pollutants. Microplastics and Nanoplastics, 1, 1-17.
  27. Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W., McGonigle, D., Russell, A.E. (2004). Lost at sea: where is all the plastic?, Science, 304(5672), 838-838.
  28. Tian, Z., Zhao, H., Peter, K. T., Gonzalez, M., Wetzel, J., Wu, C., Hu, X., Prat, J., Mudrock, E., Hettinger, R., Cortina, A.E., Biswas, R.G., Kock, F.V.C., Soong, R., Jenne, A., Du, B., Hou, F., He, H., Lundeen, R., Gilbreath, A., Sutton, R., Scholz, N.L., Davis, J.W., Dodd, M.C., Simpson, A., McIntyre, J.K., Kolodziej, E.P. (2020). A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science, 371(6525), 185-189.
  29. Unice, K.M., Weeber, M.P., Abramson, M.M., Reid, R.C., Van, G.J., Markus, A.A., Vethaak, A.D., Panko, J.M. (2019). Characterizing export of land-based microplastics to the estuary - Part I: Application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed, Science of The Total Environment, 646, 1639-1649.
  30. Wagner, S., Huffer, T., Klockner, P., Wehrhahn, M., Hofmann, T., Reemtsma, T. (2018). Tire wear particles in the aquatic environment-a review on generation, analysis, occurrence, fate and effects, Water Research, 139, 83-100.
  31. Ziajahromi, S., Drapper, D., Hornbuckle, A., Rintoul, L., Leusch, F.D. (2020). Microplastic pollution in a stormwater floating treatment wetland: detection of tyre particles in sediment, Science of the total environment, 713, 136356.