DOI QR코드

DOI QR Code

CFD Analysis for Determining Surge-direction Drag Coefficient of FOWT based on Simulation Time Step

시뮬레이션 시간 단계에 따른 FOWT 서지방향 항력계수 결정에 관한 CFD해석 연구

  • Ho-Seong Yang (Center for Offshore wind and Green hydrogen Ammonia Research, Korea Maritime and Ocean University) ;
  • Young-Ho Lee (Center for Offshore wind and Green hydrogen Ammonia Research, Korea Maritime and Ocean University)
  • 양호성 ;
  • 이영호
  • Received : 2024.04.04
  • Accepted : 2024.05.08
  • Published : 2024.06.25

Abstract

In this study, the effect of the time step specified in a computational fluid dynamics (CFD) simulation on load response is analyzed and the drag coefficients of the floating body of floating offshore wind turbines (FOWTs) are estimated. By evaluating the error in the FOWT load response and the change in the drag-coefficient values based on the density of the time intervals, this study aims to establish a time-interval setting that minimizes the time and cost of CFD simulations for selecting drag-coefficient values. Practical CFD utilization strategies necessary for the calibration of medium-to high-fidelity analysis tools are presented. Based on a comparative analysis of CFD simulations conducted at various time intervals, the results confirmed that under a certain time interval that sufficiently considers various factors, the accuracy of the FOWT response with respect to density shows minimal differences, thereby providing an efficient utilization method for CFD simulations in FOWT design and analysis.

Keywords

Acknowledgement

본 연구는 2024년도 산업통상자원부의 재원으로 한국에너지기술평가원의 에너지기술개발사업-신재생에너지핵심기술개발사업의 일환으로 수행되었습니다(과제번호 : 20213000000030).

References

  1. Jonkman, J.M., 2013, "The new modularization framework for the FAST wind turbine CAE tool", Proc. 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine.
  2. Robertson, A.N., Wendt, F., Jonkman, J.M., Popko, W., Dagher, H., Gueydon, S., Qvist, J., Vittori, F., Azcona, J., and Uzumoglu, E., et al., 2017, "OC5 Project phase II: validation of global loads of the deepcwind floating semisubmersible wind turbine", Energy Procedia, 137, 38-57.
  3. Robertson, A.N., Gueydon, S., Bachynski, E., Wang, L., Jonkman, J., Alarcon, D., Amet, E., Beardsell, A., Bonnet, P., and Boudet, B., et al., 2020, "OC6 phase I: investigating the underprediction of low-frequency hydrodynamic loads and responses of a floating wind turbine", J. Phys.: Conf. Ser., 1618, 032033.
  4. Simos, A.N., Sparano, J.V., Aranha, J.A.P., and Matos, V.L.F., 2008, "2nd order hydrodynamic effects on resonant heave, pitch and roll motions of a large-volume semisubmersible platform", Proc. ASME 2008 27th International Conference on Offshore Mehcanics and Arctic Engineering, 229-237.
  5. Bayati, I., Jonkman, J., Robertson, A., and Platt, A., 2014, "The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine", J. Phys.: Conf. Ser., 524, 012094.
  6. Simos, A.N., Ruggeri, F., Watai, R.A., Souto-Iglesias, A., and Lopez-Pavon, C., 2018, "Slow-drift of a floating wind turbine: An assessment of frequency-domain methods based on model tests", Renewable Energy, 116(Part A), 133-154.
  7. Wu, G., Jang, H., Kim, J.W., Ma, W., Wu, M.-C., and O'Sullivan, J., 2014, "Benchmark of CFD modeling of TLP free motion in extreme wave event", Proc. ASME 2014 33rd International Conference on Ocean. Offshore and Arctic Engineering, V002T08A086.
  8. Pinguet, R., Kanner, S., Benoit, M., and Molin, B., 2021, "Modeling the dynamics of freely-floating offshore wind turbine subjected to waves with an open-source overset mesh method", Proc. ASME 2021 3rd International Offshore Wind Technical Conference, V001T01A008.
  9. Bozonnet, P., and Emery, A., 2015, "CFD simulations for the design of offshore floating wind platforms encompassing heave plates", Proc. 25th International Ocean and Polar Engineering Conference.
  10. Sarlak, H., Pegalajar-Jurado, A., and Bredmose, H., 2018, "CFD simulations of a newly developed floating offshore wind turbine platform using OpenFOAM", Proc. 21st Australasion Fluid Mechanics Conference.
  11. Koop, A., Crepier, P., Loubeyre, S., Dobral, C., Yu, K., Xu, H., Zheng, Y., Kim, J., and Huang, J., 2021, "Development and verification of modeling practice for CFD decay calculations to obtain roll damping of FPSO", Proc. ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering, V008T08A030.
  12. del 'Aguila Ferrandis, J., Bonfiglio, L., Rodriguez, R.Z., Chryssostomidis, C., Faltinsen, O.M., and Triantafyllou, M., 2020, "Influence of viscosity and non-linearities in predicting motions of a wind energy offshore platform in regular waves", J. Offshore Mech. Arctic Eng., 142(6), 062003.
  13. Wang, L., Robertson, A., Jonkman, J., and Yu, Y.-H., 2022, "OC6 phase I: Improvements to the OpenFASTpredictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform", Renewable Energy, 187, 282-301.
  14. Wang, Y., Chen, H.-C., Vaz, G., and Mewes, S., 2021, "Verification study of CFD simulation of semi-submersible floating offshore wind turbine under regular waves", Proc. ASME 2021 3rd International Offshore Wind Technical Conference, V001T01A010.