DOI QR코드

DOI QR Code

Cuckoo search optimization algorithm for boundary estimation problems in electrical impedance tomography

  • Minho Jeon (Department of Electronic Engineering, Jeju National University) ;
  • Sravan Kumar Konki (Center for Artificial Intelligence, Korea Institute of Science and Technology) ;
  • Anil Kumar Khambampati (Department of Electronic Engineering, Jeju National University) ;
  • Kyung Youn Kim (Department of Electronic Engineering, Jeju National University)
  • 투고 : 2024.06.13
  • 심사 : 2024.06.22
  • 발행 : 2024.06.30

초록

Estimating the phase boundary in two-phase flow is crucial for designing and optimizing industrial processes. Electrical impedance tomography (EIT) is a promising technique for imaging phase distribution in such flows. This paper proposes using a cuckoo search (CS) optimization algorithm to estimate the phase boundary with EIT. The boundary is parameterized using the Fourier series, and the coefficients are determined by the CS algorithm. The CS algorithm iteratively seeks the phase boundary configuration by minimizing a cost function. Computer simulations and phantom experiments demonstrate the effectiveness of this method in estimating phase boundaries in two-phase flow.

키워드

과제정보

This research was supported by the 2024 scientific promotion program funded by Jeju National University

참고문헌

  1. F. A. Holand and R. Bragg, Fluid Flow for Chemical Engineers, Edward Arnold Publisher, London(1995). 
  2. R. H. Perry, D. W. Green and J. O. Maloney, Perry's Chemical Engineers Handbook, McGraw-Hill, NewYork(1997). 
  3. K. A. Shollenberger, J. R. Torczynski, D. R. Adkin, T. J. O'hern and N. B. Jackson, "Gamma-Densitometry Tomography of Gas Holdup Spatial Distribution and Industrial-Scale Bubble Column," Chem. Eng. Sci., vol.52, pp.2037-2048 1999. DOI: 10.1016/S0009-2509(97)00032-8 
  4. L. Xu, L. Han, A. Xu and J. Yang,"Application of Ultrasonic Tomography to Monitoring Gas/Liquid Flow," Chem. Eng. Sci., vol.52, pp.2171-2183, 1997. DOI: 10.1016/S0009-2509(97)00043-2 
  5. L. F. Gladden and P. Alexander, "Application of Nuclear Magnetic Resonance Imaging in Process Engineering," Meas. Sci. Technol., vol.7, pp.423-435, 1996. DOI: 10.1088/0957-0233/7/3/026 
  6. J. G. Webster, Electrical impedance tomography. Taylor & Francis Group, 1990. 
  7. M. Cheney, D. Isaacson, and J. C. Newell, "Electrical impedance tomography," SIAM review, vol.41, no.1, pp.85-101, 1999. DOI: 10.21037/atm.2017.12.06. 
  8. R. Stacey, K. Li, R. N. Horne et al., "Electrical impedance tomography (eit) technique for realtime saturation monitoring," in SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2006. DOI: 10.2118/103124-MS 
  9. V. Kolehmainen, A. Voutilaninen, J. P. Kaipio, "Estimation of non-stationary region boundaries in EIT-state estimation approach," Inverse Problems, vol.17, no.6, pp.1937, 2001. DOI: 10.1088/0266-5611/17/6/324 
  10. D. K. Han and A. Prosperetti, "A shape Decomposition Technique in Electrical Impedance Tomography," J. Comput. Phys., Vol.155, no.1, pp.75-95, 1999. DOI: 10.1006/jcph.1999.6330 
  11. J. E. Butler and R. T. Bonnecaze, "Inverse Method for Imaging a Free Surface using Electrical Impedance Tomography," Chem. Eng. Sci., Vol.55, no.7, pp.1193-1204, 2000. DOI: 10.1016/S0009-2509(99)00410-8 
  12. S. Kim, U. Z. Ijaz, A. K. Khambampati, K. Y. Kim, M. C. Kim, and S. I. Chung, "Moving interfacial boundary estimation in stratifed flow of two immiscible liquids using electrical resistance tomography," Measurement Science and Technology, vol.18, no.5, p.1257, 2007. DOI: 10.1088/0957-0233/18/5/012 
  13. A. K. Khambampati, Y. J. Hong, K. Y. Kim, and S. Kim, "A boundary element method to estimate the interfacial boundary of two immiscible stratifed liquids using electrical resistance tomography," Chemical Engineering Science, vol.95, pp.161-173, 2013. DOI: 10.1016/j.ces.2013.03.018 
  14. O-P. Tossavainen, M. Vauhkonen, L. M. Heikkinen, and T. Savolainen," Estimating Shape and Free Surfaces with Electrical Impedance Tomography," Meas. Sci. Technol., vol.15, no.7, pp.1402-1411, 2004. DOI: 10.1088/0957-0233/15/7/024 
  15. E. Beretta, S. Micheletti, S. Perotto, and M. Santacesaria, "Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in eit," Journal of Computational Physics, vol.353, pp.264-280, 2018. DOI: 10.1016/j.jcp.2017.10.017 
  16. D. Liu, D. Gu, D. Smyl, J. Deng and J. Du, "Multiphase conductivity imaging with electrical impedance tomography and b-spline level set method," IEEE Trans Instrum Meas, vol.69, no.12, pp.9634-9644, 2020. DOI: 10.1109/TIM.2020.3005835 
  17. M. C. KIM, K. Y. KIM, S. KIM, "Estimation of phase boundaries in two-phase systems by an electrical impedance tomography technique," Journal of Industrial and Engineering Chemistry, vol.10, no.5, pp.710-716, 2004. 
  18. D. Liu, D. Gu, D. Smyl, A. K. Khambampati, J. Deng, J. Du, "Shape driven eit reconstruction using fourier representations," IEEE Trans Med Imaging, vol.40, no.2, pp.481-490, 2020. DOI: 10.1109/TMI.2020.3030024 
  19. B. S. Kim, U. Z. Ijaz, J. H. Kim, M. C. Kim, S. Kim, K. Y. Kim, "Nonstationary phase boundary estimation in electrical impedance tomography based on the interacting multiple model scheme," Measurement Science and Technology, vol.18, no.1, p.62, 2006. DOI: 10.1088/0957-0233/18/1/008 
  20. A. K. Khambampati, S. K. Konki, Y. Han, S. Sharma, and K. Y. Kim, "An effcient method to determine the size of bladder using electrical impedance tomography," in TENCON 2018~2018 IEEE Region 10 Conference. IEEE, pp.1933-1936. DOI: 10.1109/TENCON.2018.8650499 
  21. D. Liu, A. K. Khambampati, S. Kim and K. Y. Kim, "Multi-phase flow monitoring with electrical impedance tomography using level set based method," Nuclear Engineering and Design, vol.289, no.2015, pp.108-116, 2015. DOI: 10.1016/j.nucengdes.2015.04.023 
  22. D. Liu, D. Smyl, J. Du, "Nonstationary shape estimation in electrical impedance tomography using a parametric level set based extended kalman filter approach," IEEE Trans Instrum Meas, vol.69, no.5, pp.1894-1907, 2020. DOI: 10.1109/TIM.2019.2921441 
  23. D. Liu, J, Du, "A moving morphable components based shape reconstruction framework for electrical impedance tomography," IEEE Trans Med Imaging, vol.38, no.12, pp.2937-2948, 2019. DOI: 10.1109/TMI.2019.2918566 
  24. D. Liu, D. Gu, D. Smyl, J. Deng, J. Du, "Shape reconstruction using boolean operations in electrical impedance tomography," IEEE Trans Med Imaging, vol.39, no.9, pp.2954-2964, 2020 DOI: 10.1109/TMI.2020.2983055 
  25. U. Z. Ijaz, A. K. Khambampati, M. C. Kim, S. Kim, K. Y. Kim, "Particle swarm optimization technique for elliptic region boundary estimation in electrical impedance tomography." AIP Conference Proceedings, American Institute of Physics, Vol.914, no.1, pp.896-901, 2007. DOI: 10.1063/1.2747529 
  26. R. R. Ribeiro, A. R. Feitosa, R. E. De Souza, W. P. Dos Santos, "Reconstruction of electrical impedance tomography images using genetic algorithms and non-blind search." 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI). IEEE, 2014. DOI: 10.1109/ISBI.2014.6867832 
  27. A. K. Khambampati, U. Z. Ijaz, J. S. Lee, S. Kim and K. Y. Kim, "Phase Boundary Estimation in Electrical Impedance Tomography using Hooke and Jeeves Pattern Search method," Meas. Sci. Technol., Vol.21, no.3, pp.035501, 2010. DOI: 10.1088/0957-0233/21/3/035501 
  28. S. K. Sharma, S. K. Konki, A. K. Khambampati, and K. Y. Kim, "Bladder boundary estimation by gravitational search algorithm using electrical impedance tomography," IEEE Transactions on Instrumentation and Measurement, vol.69, no.12, pp.9657-9667, 2020. DOI: 10.1109/TIM.2020.3006326 
  29. S. K. Sharma, A. K. Khambampati and K. Y. Kim, "Hybrid Particle Swarm Optimization-Gravitational Search Algorithm Based Detection of Graphene Defects With Electrical Impedance Tomography," IEEE Access, vol.10, pp. 105744-105757, 2022. DOI: 10.1109/ACCESS.2022.3210981 
  30. A. S. Ashour, S. Samanta, N. Dey, N. Kausar, W. B. Abdessalemkaraa and A. E. Hassanien, "Computed tomography image enhancement using cuckoo search: a log transform based approach," Journal of Signal and Information Processing, vol.6, no.3, pp.244-257, 2015. DOI: 10.4236/jsip.2015.63023 
  31. H. L. Chen, B. Yu, H. L. Zhou and Z. Meng, "Improved cuckoo search algorithm for solving inverse geometry heat conduction problems," Heat Transfer Engineering, vol.40, no.3-4, pp. 362-374, 2019. DOI: 10.1080/01457632.2018.1429060 
  32. S. Chen, R. Yang, R. Yang, L. Yang, X. Yang, C. Xu and W. Liu, "A parameter estimation method for nonlinear systems based on improved boundary chicken swarm optimization," Discrete Dynamics in Nature and Society, vol.2016, no.1, pp. 3795961, 2016. DOI: 10.1155/2016/3795961 
  33. X. S. Yang and S. Deb, "Cuckoo search via Levy flights," 2009 World congress on nature & biologically inspired computing (NaBIC). Ieee, 2009. 
  34. X. S. Yang and S. Deb, "Engineering optimisation by cuckoo search," International Journal of Mathematical Modelling and Numerical Optimisation, vol.1, no.4, pp.330-343, 2010. DOI: 10.1504/IJMMNO.2010.03543 
  35. A. Kaveh, T. Bakhshpoori, M. Ashoory, "An efficient optimization procedure based on cuckoo search algorithm for practical design of steel structures," International Journal of Optimization in Civil Engineering, vol.2, no.2, pp.1-4, 2012.