DOI QR코드

DOI QR Code

CMOS 기반의 집적 회로 및 시스템을 위한 극저온 측정 환경 구축

Measurement set-up for CMOS-based integrated circuits and systems at cryogenic temperature

  • 안현식 ;
  • 최윤석 ;
  • 한정환 ;
  • 남재원 ;
  • 조건희 ;
  • 김주성
  • Hyeon-Sik Ahn (Department of Electronic Engineering, Hanbat National University) ;
  • Yoonseuk Choi (Department of Electronic Engineering, Hanbat National University) ;
  • Junghwan Han (Department of Radio and Information Communication Engineering, Chungnam National University) ;
  • Jae-Won Nam (Department of Electronic Engineering, SeoulTech) ;
  • Kunhee Cho (Department of Electronic and Electrical Engineering, Kyungbook National University) ;
  • Jusung Kim (Department of Electronic Engineering, Hanbat National University)
  • 투고 : 2024.06.07
  • 심사 : 2024.06.19
  • 발행 : 2024.06.30

초록

본 논문에서는 극저온 냉동기를 사용하여 양자 컴퓨터 제어 및 read-out을 위한 CMOS 기반의 집적회로 측정 셋업을 제시한다. CMOS 회로는 큐비트 안정성과 잡음 감소를 위해 3~5 K의 극저온에서 작동해야한다. 기존의 극저온 측정 시스템은 액체 헬륨 담금질이며, 이는 소모성 자원을 장기간 사용하기에 비용이 많이 소모된다. 따라서 헬륨 가스를 장기간 사용해도 비용이 들지 않는 폐쇄 사이클 냉동기(Closed Cycle Refrigerator, CCR) 기반의 극저온 측정 시스템에 대해 설명한다. Gifford-Mcmahon(G-M) 방식의 극저온 냉각기를 이용하여 4.7 K에 도달할 수 있는 냉동기를 구축하였다. 이는 가격 경쟁력이 우수한 극저온 냉동기 셋업이 될 것으로 기대된다.

In this work, we introduce a complementary metal-oxide semiconductor(CMOS)-based integrated circuit(IC) measurement set-up for quantum computer control and read-out using a cryogenic refrigerator. CMOS circuits have to operate at extremely low temperatures of 3 to 5 K for qubit stability and noise reduction. The existing cryogenic measurement system is liquid helium quenching, which is expensive due to the long-term use of expendable resources. Therefore, we describe a cryogenic measurement system based on a closed cycle refrigerator (CCR) that is cost-free even when using helium gas for long periods of time. The refrigerator capable of reaching 4.7 K was built using a Gifford-Mcmahon(G-M) type cryocooler. This is expected to be a cryogenic refrigerator set-up with excellent price competitiveness.

키워드

과제정보

This work was supported by NRF Grant funded by Korean Government through MIST under Grant 2022R1A4A3029433. The EDA tool was supported by IC Design Education Center (IDEC).

참고문헌

  1. H. J. Kimble, "The quantum internet," Nature., vol.453, pp.1023-1030, 2008. 
  2. F. Arute et al., "Quantum supremacy using a programmable superconducting processor," Nature., vol.574, pp.505-510, 2019. 
  3. R. Maurand et al., "A CMOS silicon spin qubit," Nature communications., vol.7, 2016. 
  4. MF. Gonzalez-Zalba et al., "Scaling silicon-based quantum computing using CMOS technology," Nature electronics., vol.4, pp.872-884, 2021. DOI: 10.1038/s41928-021-00681-y 
  5. J. Kim et al., "CMOS Intercinnect Electronics Architecture for Reliable and Scalable Quantum Computer," J. IKEEE., vol.27, no.1, pp.12-18, 2023. DOI: 10.7471/ikeee.2023.27.1.12 
  6. F. Sebastiano et al., "Cryo-CMOS electronic control for scalable quantum computing," DAC '17: Proceedings of the 54th Annual Design Automation Conference., pp.1-6, 2017. DOI: 10.1145/3061639.3072948 
  7. B. Patra et al., "Cryo-CMOS circuits and systems for quantum computing applications," IEEE Journal of Solid-State Circuits., vol. 53, no.1 pp.309-321, 2017. DOI: 10.1109/JSSC.2017.2737549 
  8. Y. Zhai et al., "Development of a cryogen-free dilution refrigerator for superconducting quantum computing," IEEE Transactions on Applied Superconductivity., vol.34, no.3, 2024. DOI: 10.1109/TASC.2023.3349370 
  9. F. Kreith, "Energy Conversion: Stiring Engines," CRC Pressy., 2nd Edition, 2017.
  10. A. Beckers et al., "Cryogenic Characterization of 28nm Bulk CMOS Technology for Quantum Computing," 47th European Solid-State Device Research Conference (ESSDERC)., 2017. DOI: 10.1109/ESSDERC.2017.8066592