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ABSTRACT. In this paper, first we show that all finite BC'I-algebras are solvable. We then
introduce the notion of a #-pair for a maximal ideal of a BCI-algebra. Proving various
properties of maximal @-pairs, we use them to characterize solvable and nilpotent BC'I-
algebras.

1. Introduction

The concepts of BC K-algebras, and the more general BC'I-algebras, were in-
troduced by Y. Imai and K. Iséki [5, 6] in 1966. Since this time, various authors
have studied and developed many concepts related to these algebraic structures; see
for example [2, 8, 10, 11, 12]. In [4], Huang used the notion of nilpotency in ring
theory to introduce the notion of nilpotency in BCI-algebras. See also [3], where
this and a new definition of commutators and solvability in a BCI-algebra was
given, and then used to prove that every finite nilpotent BCI-algebra is solvable.
In this paper, we first improve this result (see [8, Theorem 6.3]) and show that every
finite BC'I-algebra is solvable. Also we introduce the notion of #-pair for a maximal
ideal of a BCI-algebra and give some results for nilpotency and solvability of a
BCT-algebra. This is similar to the concept of #-pair for any maximal subgroup
of a group as introduced by Mukherjee and Bhattacharya [9], and Beidleman and
Smith [1]. This concept has since been further studied by a number of authors,
including Guo [3] and Li [7]. We also look at other useful properties of solvable and
nilpotent BC'I-algebras.
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2. Preliminaries and Basic Results

In this section we give some basic results which will be used in the rest of the
paper.

A BC1T-algebra is an algebra (X, *,0) of type (2,0), if for any z,y,z € X, it sat
isfies the following axioms:
(BCI1) ((xxy)* (z*x2))x(zxy) =0,
(BCI2) (x* (x*y))*xy =0,
(BCI3) xxx =0,
(BCI4) x xy =y+*x =0 implies x = y. [5, (]

In any BCI-algebra X, one can define a partial order by putting = < y if and
only if x xy = 0.
Theorem 2.1.([13]) In any BCI-algebra X the following properties are satisfied
for any z,y,z € X:
(BCI5) z %0 = .
(BCI6) (z*y)*z=(zx2)xy.
(BCI7) z <yimplieszxz <y*xzand zxy < z x 2.
(BCIB) (x+z)*(y*z) <zx*y.
(BCI9) z* (z* (x*xy)) =z *y.
(BCI10) 0% (zxy) = (0% z) * (0 *xy).

Theorem 2.2.([13]) Let X be a nonempty set. Then X is a BCI-algebra if and
only if there is a partial ordering < on X such that for any z,y, z € X, the following
conditions hold:

(1) (zxy)=(zx2) < (2xy),
(ii) zx (z*y) <y,
(iii) x*y =0 if and only if z < y.

A nonempty subset S of a BCI-algebra X is said a subalgebra of X if xxy € S for
any x,y € S. Also a nonempty subset I of a BCI-algebra X is said an ideal of X
ifoelandifxxy eI,y <€, imply z € I. Obviously, X and {0} (we write 0 is
an ideal of X, for convenience) are ideals of X, which called the trivial ideals of X.
An ideal [ is called proper, if I # X and is called closed, if it is also a subalgebra
of X.

A BClI-algebra X is called commutative if z < y implies x A y = x, where
ANy = yx(yxz), for all z;y € X. An ideal T of a BCI-algebra X is called
commutative if x xy € I implies z x ((y* (y*z)) * (0% (y*z))) € I for all z,y € X.

In a BCI-algebra X we denote by BCK(X) the BCK-part of X and set

BCK(X)={x € X :0*xz =0}.

If X = BCK(X), then X is called a BC'K-algebra. One can easily check that the
BCK-part of X is a closed ideal of X. A BCI-algebra X is said to be p-semisimple
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if 0x(0xx) ==z, forall x € X. The set {x € X : 0% (0xx) = x} is called the center
of X and is denoted by C(X) (see [12]).

Let S C X be a non-empty set. The least ideal of X containing S is said the
generated ideal of X by S and is denoted by (S). A proper ideal M of X is called a
maximal ideal if (M U{z}) = X, for any x € X \ M. We note that M is a maximal
ideal of X if and only if M C I C X implies that M = I or I = X, for any ideal
I of X. We call a maximal ideal of X that is closed, as a closed maximal ideal
of X. If A and B are two ideals of X, then the symbol A + B will be used for
(AU B). Moreover, If A and B are closed, then A+ B is a closed ideal of X (see
[13], Proposition 1.4.15).

Let I be an ideal of a BCI-algebra X and z,y € X. Following [8], we call the
element

[2,y] = ((z Ay) = (y A w)) = ((0* (y x 7)),
is the commutator of 1 and x5 of weight 2.
In general, the element [x1, z2, ..., x,] = [[T1, ..., Tn—1], Zn] Is & commutator of weight
n > 2, where [x1] = 1.

Let I be an ideal of a BCI-algebra X. Then the relation ~ defined by x ~ y if
and only if x xy,y *x € I is a congruence relation on X. Let I, denote the class of
x € X and X/I denote the set of all classes I, where € X. Then (X/I,*, 1) is
a BC'I-algebra, where I, x I, = I,., and I, = I, if and only if + < y. The BCI-
algebra X/I is called the quotient BCT-algebra of X determined by I. Obviously,
forany x € I, I, = I if I is a closed ideal of X. Throughout the paper, X means a
BClI-algebra (X, *,0).

Lemma 2.3.([8]) For any z,y € X, the following hold:
(i) [x,y] *z < (0*x),
(i) 0 [2,] = 0,
(iii) [0*z,y] =0.

Theorem 2.4.([13]) Anideal I of a BCI-algebra X is closed if and only if 0%z € I,
for any x € I. Moreover, if X is of finite order, then any ideal of X is closed.

Theorem 2.5.([13]) Let S be a nonempty subset of a BCI-algebra X and let
A={zeX: (- ((z*xa1)*az)x---)*xa, =0; for some ay,as,...,a, € S}. Then
(S) = AU {0}. Moreover, if I is an ideal of X, then

(AuS)={zeX:(--((z*ay)*az)*-)*a, € A; for some ay,...,a, € S}.
Theorem 2.6.([13]) A closed ideal I of a BCI-algebra X is commutative if and
only if the quotient algebra X/I is a commutative BCT-algebra.

Definition 2.7.([8]) Let X7, Xo, ..., X, be a non-empty subsets of X. A commuta-
tor of X7 and X5 is defined as [ X1, Xo] = ({[z1, z2] : 71 € X1, 22 € X2}). Moreover,
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forn > 2, [Xy,...,X,] = [[X1, ..., Xn—1], Xin]. Hence [X, X] = {{[z,y] : x,y € X})
and is called the derived ideal of X, which is denoted by X’ = X (1),

Theorem 2.8.([8]) Let I be an ideal of X. Then X/I is commutative if and only
if XU 1.

By Lemma 2.3(ii), for any [z,y] € X, 0% [z,y] =0 € X1, which implies that
X@ is a closed ideal of X.

Corollary 2.9. Let X be a B(CI-algebra. Then X is commutative if and only if
XM =o.

By using Theorems 2.6 and 2.8, we conclude the following result.

Corollary 2.10. Let I be a closed ideal of BC'I-algebra X. Then I is commutative
if and only if [z,y] € I, for all z,y € X.

Lemma 2.11. Let X be a BCI-algebra and I be an ideal of X. Then for any
z,y € X, [valy] = I[w,y]

Proof. Let x,y € X. Then
[Iwa Iy] = ((Iy * (Iy * 1)) % (Iy * (I * Iy))) * (Lo * (Iy * 1))
= (L(ys(yea)) * L@s(wry))) * L(0x(yra))
= I((yu(yra)) (@ (39))) 0k (i) = Lw -

O

Theorem 2.12.([13]) If [ is a commutative ideal of a BCI-algebra X, then every

closed ideal A of X with I C A, is commutative.

Definition 2.13. Let I be a subalgebra of a BC'I-algebra X. The set
Rx(I)={x€ X :[x,a] €I, for any a € I},

is called the normalizer of I in X. Since I is a subalgebra of X, it follows that
I C Rx(I). Obviously, if X is commutative, then Rx(I) = X.

Lemma 2.14. Let X be a BClI-algebra and I be a subalgebra of X. Then
C(X) € Rx(I).

Proof. Suppose that € C'(X). Then 0% (0 ) = 2. Now for any y € X,
[z, 9] = ((y * (y x 2)) * (25 (25 y))) * (0% (y x )

<(xx(zx(xxy)))*x0*(y*xx)) by (BCIT) and Theorem 2.2(i1)
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= (zxy)* (0% (y*2)) by (BCI9)
= (z*y) * ((0xy) * (0% 2)) by (BCI10)
= (zxy)* (0% (0% 2)) *y) by (BCI6)
=(zxy)*(x*y) = by assumption and (BCI3)
Hence for all y € X, [2,y] = 0 € I and so C(X) C Rx(I), as required. O

Corollary 2.15. Let X be a p-semisimple BCI-algebra and I be a subalgebra of
X. Then Rx(I) = X.

Proof. Since X is p-semisimple, C'(X) = X. Now the result holds by Lemma
2.14. O

Example 2.16. Let X = {0,1,2,3,4,5} be a BCI-algebra with the Cayley table
as follows:

U WO~ O %
G W~ OO
CTW WO O
T WO~ O
= OO O w
MO OO~ Ok
O ot ot ot ot ot ot

By simple calculations we obtain I = {0,2,4} is a subalgebra of X such that
1 ¢ Rx(I), because [1,4] =1, and Rx(I) = {0,2,3,4,5}.

Lemma 2.17. Suppose that A is a subalgebra and B is a closed ideal of a BC'I-
algebra X. Then [A, B] C B if and only if A C Rx(B).

Proof. Let a € A. Then for any b € B, [a,b] € [A, B] C B. Hence [a,b] € B and so
A C Ry (B).

Conversely, if A C Rx(B), then for any a € A,b € B, [a,b] € B. Now let
u € [A,B] = ([a,b] : a € A,b € B). By Theorem 2.5, we get

(--~((u*$1)*x2)*"')*$n:0637

for some n € N, where x; = [a;,b;],a; € A,b; € B and i = 1,...,n. Since B is an
ideal of X, it follows that u € B, which shows that [A, B] C B, as required. O
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Lemma 2.18. Let I be a subalgebra of a BCI-algebra X. Then Nx(I) =
(Rx(I)) = Ngy(rcsJ where J is any ideal of X such that Rx(I) C J, is the
closed ideal of X contains I. Moreover, if I is a commutative closed ideal of X,
then Nx(I) is the largest commutative closed ideal of X containing I.

Proof. First by Lemma 2.3(iii), for any « € Nx(I) and a € I,[0*z,a] =0 € I and
thus 0 % 2 € Rx(I), which shows that Nx(I) is the closed ideal of X. Also if I is
a commutative closed ideal of X, then by Theorem 2.12, Nx(I) is commutative.
Next, let K be a commutative closed ideal of X such that I C K. By Corollary 2.10,
forall k € K and a € I, [k,a] € I and so K C Rx(I) C Nx(I), which shows that
Nx (I) is the largest commutative closed ideal of X containing I, as required. O

We observe that if I is a closed ideal of a BCI-algebra X, then Cx (I) C Nx (),
where Cx(I) = ({z € X : [x,a] = 0,[a,2] = 0,Va € I}) is said the centralizer of I
in X (see [8]).

Definition 2.19. For an ideal U of X, let Ux, the core (with respect to X) of U,
be the largest closed ideal of X contained in U. Obviously if U is a closed ideal of
X, then Ux =U.

Corollary 2.20. If X is a finite BCI-algebra and I is an ideal of X, then Ix = I.

Proof. Since by Theorem 2.4, all ideals of X are closed, we deduced that Ix = I,
for any ideal I of X. O

Theorem 2.21.([13]) Suppose that A and B are ideals of a BCI-algebra X and
let AB = UgeaBa, where B, is an equivalence class in X/B. If B is closed, then
AB = A+ B, where A+ B=(AUB,).

Theorem 2.22.([13]) If H is a subalgebra of X and K is a closed ideal of X, then
HK/K=H/(HNK).

3. Nilpotent and Solvable BCI-algebras

In this section, we provide some results concerning nilpotent and solvable BCI-
algebras. In [8], Mohammadzadeh and Borzooei introduced the concept of nilpotent
BC-algebra, according to nilpotency in group theory, as follows:

Definition 3.1.([8]) Let Zy(X) = 0, Z,(X) = {z : [x,y1,...,yn) = 0, for any
Y1, Yn € X}) for any n > 1. By Lemma 2.3(iii), Z,(X) is a closed ideal of X.
The sequence of ideals

0=2Zo(X) C Z1(X) C ... C Zn(X),

is called the upper central series of X. Its i-th term Z;(X) is called the i-th center
of X. Now, X is called nilpotent, if there exists n € N such that Z,(X) = X. The
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smallest such integer is called the class of X. We note that Z;(X) = Z(X) = ({z:
[x,y] =0, for any y € X}).

Example 3.2. Let — be the subtraction of integers. Then X = (Z,—,0) is a
p-semisimple BCT-algebra and so C(X) = X (see [13], Example 5.3.2). It follows
that [z,y] = 0 for all z,y € X, by the proof of Lemma 2.14 and hence Z;(X) = X,
which shows that X is nilpotent of class at most 1.

Lemma 3.3.([8]) Let ¢ > 0. Then [Z;(X), X] C Z;_1(X).

Theorem 3.4.([8]) Let X be a BCI-nilpotent algebra and I be a nontrivial proper
closed ideal of X. Then I # Nx(I).

Proof. Assume that X is nilpotent of class r with the upper central series:
0=7Zy(X)CZ1(X)C..CZ.(X)=X.

Let A={m: Z,(X)Z I,1<m<r} Itisobvious that r € A. Let k = min A.
Hence Z(X) ¢ I and Zx_1(X) C I. Now, we observe that by Lemma 3.3,

[Ze(X), 1] C [Z(X), X] € Zp—1(X) C 1.

Hence by Lemma 2.17, Z;(X) C Rx (), it follows that I C Rx(I) C Nx(I) and
the result holds. O

The following immediate corollary of the above theorem is straightforward.

Corollary 3.5. If X is a BC'I-nilpotent algebra and M is a closed maximal ideal
of X, then Nx(M) = X.

Theorem 3.6.([8]) A BCI-algebra X is commutative if and only if it is nilpotent
of class at most 1.

Corollary 3.7. For any BCI-algebra X, the following properties are equivalent:
(i) X is nilpotent of class at most 1,
(ii) the zero ideal {0} is commutative,

(iii) every closed ideal of X is commutative.

Proof. The proof is trivial from Theorem 2.5.19 and Corollary 2.5.20 of [13], and
Theorem 3.6. O

Lemma 3.8.([8]) If X is nilpotent BCT-algebra, then any subalgebra of X is
nilpotent. Also if I is a BCI-ideal of X, then X/I is nilpotent.
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Theorem 3.9.([8]) Let I be an ideal of BCI-algebra X and n,m € N. If [ is a
nilpotent BCI-ideal of class m and X/I is nilpotent of class n, then X is nilpotent
of class n + m.

Theorem 3.10.([8]) Let X be a nilpotent BCI-algebra of class n > 1 and N be a
nontrivial closed ideal of X. Then N N Z(X) # 0.

Corrollary 3.11.([8]) Let X be a nilpotent BCI-algebra of classn > 1. If N is a
minimal (closed) ideal of X, then N C Z(X).

The following concept was introduced by Mohammadzadeh and Borzooei [3],
by applying a new definition of derived ideal (Definition 2.7).

Definition 3.12. Let X be a BClI-algebra, X(') = [X,X] and for any n €
N, X = [Xx(=D x(®=1]  Then X is called solvable if there exists n € N such
that X() = 0. The smallest such n is called derived length of X. Clearly by Lemma
2.3(iii), X for any n € N is a closed ideal of X.

Lemma 3.13.([8]) If X is a solvable BCI-algebra, then any subalgebra of X is
solvable. Also if I is a BCI-ideal of X, then X/I is solvable.

Theorem 3.14.([8]) Let I be an ideal of X. If I and X/I are solvable BCI-
algebras, then X is a solvable BC'I-algebra.

Theorem 3.15.([8]) Let X be a finite BCI-algebra and [z, y] < z, for any =,y € X.
Then X is solvable.

In the following theorem, we give a necessary and sufficient condition on a
BC(C-algebra X, such that X to be solvable.

Theorem 3.16. The BCI-algebra X is solvable if and only if there exists a chain
of closed ideals X = Xg 2 X; 2 Xg D --- DO X = 0 such that each quotient
Xi1/Xi41, 0 <1< k—11is commutative.

Proof. Since X is solvable, there exists i € N such that X = 0. Then we have a
sequence of closed ideals:

X;x(l)QX@)Q...Qx(i):O,

We show that each quotient X /X(+1(1 < | < i — 1), is commutative. Let
a,b € XU, Since XU = [x® X O] it follows that [a,b] € X¢+1) and then by
Lemma 2.11,
[XélJrl),XéHl)] _ X[(i:il-)]l) _ X(l+1) _ X(SH_U.
Therefore XV /X (+1) is commutative, by Corollary 2.9.
Conversely, let X = Xy O X7 D X5 D -+ O Xj = 0 be the closed ideals of
X such that each quotient X;/X;11, 0 <1 < k — 1 is commutative. Therefore Xy,
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and Xj_1/Xj are solvable, which show that Xj_; is solvable by Theorem 3.14.
Similarly, Xj_o/Xy_1 is solvable, and thus Xj_o is solvable. Continuing this way,
X is solvable. Next, since X/X is commutative, it follows that Xy = X is solvable,
as desired. O

By using the concept of solvable BCI-algebras, we have the following main
theorem.

Theorem 3.17. Let X be a finite BC'I-algebra. Then X is solvable.

Proof. Suppose that X is a finite BCI-algebra and B = BCK(X) is the BCK-
part of X. Since by Lemma 2.3(ii), 0 * [x,y] = 0 for all x,y € X, it follows that
X®) C B. We observe that if |B| < 2, then X*) = 0 and so by Corollary 2.9, X is
commutative, which shows that X is solvable. Next, we assume that |B| > 2. Then
by Lemma 2.3(i), [z,y] *x < 0*x = 0 for all z,y € B. Thus [z,y] *2 = 0 and so
[z,y] < z. Hence by Theorem 3.15, B is solvable. Now X/B is solvable, since X/B
is commutative by Theorem 2.8 which, together with Theorem 3.14, implies that
X is solvable. O

Remark 3.18. Note that, the above theorem was proved in [8, Theorem 6.3] with
extra condition that G must be a nilpotent BCI-algebra.

As an application of Theorem 3.17, we give the following main result.
Corollary 3.19. A finite BCI-algebra is nilpotent.

Proof. Assume that X is a finite BCI-algebra. By Theorem 3.17, X is solvable.
Suppose on the contrary, that X is non-nilpotent of the smallest order. If X1 =0
then X is commutative by Corollary 2.9 and so X is nilpotent, which is impossible.
Moreover, if X1 = X, then X = X® for any i € N, which shows that X is non-
solvable, a contradiction. Now X/X™) and X are nilpotent and so by Theorem
3.9, X is nilpotent, again a contradiction. This completes the proof. O

4. f-pairs in BCI-algebras

In this section, we determine the concept of #-pair for a maximal ideal in a
BCT-algebra. Moreover, we obtain some results on the maximal #-pairs when the
BC('I-algebra is solvable or nilpotent. For convenience, we denote M < X to indicate
that M is a maximal ideal of a BC'I-algebra X. The following definition is essential
in our investigation.

Definition 4.1. Let M be a maximal ideal of BCI-algebra X. A pair (C, D) of
subalgebras of X is said to be a #-pair for M if it satisfies the following conditions:

(a) D is a closed ideal of X, contained in C;
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(b) DC M and C € M;
(¢) C/D includes properly no nonzero closed ideal of X/D.

Furthermore, if C' is an (a closed) ideal of X, then the pair (C, D) is called an
(a closed) ideal 6-pair for M. This concept will be use to investigate the influence
of the maximal ideals on the structure of certain BC'I-algebras.

If M is a maximal ideal of X, then we denote by 0(M), the set of all f-pairs of
M, and define a partial order on it by means of (Cy, D1) < (Ca, D5) if and only if
(1 is a subalgebra of Cs, whence 6(M) will contain maximal elements with respect
to this ordering, which called maximal #-pairs. We denote the set of all maximal
O-pairs for M, by Opmas(M). Also we call a closed ideal #-pair (A, B) € (M) is
maximal closed ideal 6-pair, if there is no closed ideal 6-pair (C, D) € (M) such
that A is a proper subalgebra of C'.

This is similar to the concept of #-pair for any maximal subgroup of a finite
group as suggested by Mukherjee and Bhattacharya [9], which has since been further
investigated by a number of authors (see [3, 7]). Also Beidleman and Smith applied
this concept for infinite group (see [1]).

Example 4.2. Let X = {0,a,b,c,d} and the binary operation * be defined as
follows:

QL O T O %
QUL O T OO
QL O Q@ OO
QL O OO Ol
QU O 2 OO0
O 0 Q@ OOl

Then X is a BCI-algebra. Let M = {0,a,b,c}, A ={0,¢,d} and B = {0, c}. Hence
M is a closed maximal ideal of X, A is a subalgebra of X which is not an ideal,
B CM=Mx and (A,B) € (M).

Example 4.3. Let X = {0,1,a,b,c} and define the binary operation x on X by
the following table:

QO o R Ol ¥
O SN = OO
QO T OO
QOO0 oSS

S0 O Q|
O T 0 OO0

Then (X, x,0) is a BCTI-algebra. Let M = {0,1,a}, C ={0,1,b} and D = {0,1}.
Then M < X and (C, D) is a closed maximal ideal 6-pair for M.
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Example 4.4. For a BCI-algebra X = (Z,—,0), where — be the subtraction of
integers, we define two closed maximal ideals of X, as My = {2n:n € Z} and My =
{3n :n € Z}. We conclude that (X, M7) € Oy (M7) and (X, M2) € 000 (M2).

Lemma 4.5. Let M be a maximal ideal of a BCI-algebra X and (C, D) € 6(M).
Then D C Mx.

Proof. Since D is a closed ideal of X such that D C M, it follows that D C Mx. O

The following theorem is a useful fact in proving our next results.

Theorem 4.6. Let X be a BCI-algebra, M be a maximal ideal of X and (C, D)
be an ideal #-pair for M. Then

(i) D=(CNM)x.
(i) D=CnNMx if (C,D) is a closed ideal #-pair for M; otherwise D = Cx.

Proof. (i) Obviously, D C (C'N M)x. For the converse, assume by way of contra-
diction that (CNM)x € D. Then D+ (CNM)x is a closed ideal of X containing
properly D and contained in C. It follows that C = D + (C N M)x, because
(C,D) € (M). Hence X = (C,M) = M+ D+ (CnNnM)x = M, which is a
contradiction.

(ii) First suppose that C is a closed ideal of X. Then CNMx C (CNM)x and
so by (i), CN Mx C D, whence D = C' N Mx. Next, assume that C' is not closed
ideal of X. Then Cx is a closed ideal of X containing D. Since Cx is a proper
ideal of C, it follows that D = Cx by the definition of #-pair. O

Corollary 4.7. If (A, B),(C,D) € (M) and (A, B) < (C, D), then B C D.

Proof. Since A C C, it follows that B=(ANM)x C (CNM)x = D, by Theorem
4.6. O

Lemma 4.8. Let X be a BCI-algebra, M < X and I be an ideal of X such that
ICM.

(i) If (A, B) is a (an ideal) 6-pair for M and I C B, then (A/I,B/I) is a (an
ideal) #-pair for M/I. Conversely, if (A/I, B/I) is a (an ideal) f-pair for M/I,
then (A, B) is a (an ideal) #-pair for M. In particular, (A, B) is a maximal
member in §(M) if and only if (A/I, B/I) is a maximal member in 6(M/I).

(ii) If (A, B) is a closed ideal #-pair of M, then 6(M) contains a maximal closed
ideal #-pair (C, D) such that (A, B) < (C,D) and A/B = C/D.

Proof. (i) This is trivial from the definition of #-pair.
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(ii) If (A, B) is not a maximal member in (M), then (A, B) < (41, By), where
(Al,Bl) € Q(M) If B = Bl, then By = B Cc A C Al, and so Al/Bl
includes properly nonzero closed ideal A/B; of X/Bj, contracting the fact
that (A1, B1) € (M), whence by Corollary 4.7, B is a proper subalgebra of
B;. Also AN By = B; otherwise we will have B € AN By C A, which is
impossible by definition of f-pair. It is readily verified that A + By = A;.
Next, we prove that A; is a closed ideal of X. Let y * z,z € A;. Since
A1 = B; + A, then by Theorem 2.5, and (BCI6) we get

(- ((y*xz)*ar) - )*xa,=(-((y*xar1)*ag) *---*xa,)xx € By,

for somen € Nand ay,...,a, € A. Since A C Ay, it follows that y € A1+ By =
A+ By + By = A+ By = Ay, as required. Also since A is a closed ideal of
X, then as A+ By = Ay, we deduced that A; is closed. Now by Theorems
2.21 and 2.22

A1/By = (A+ By)/B, = AB,/B, =~ AJAN B, ~ A/B.

Finally, if (A1, By) is not maximal in §(M ), we may replace (A4, B) by (41, B1)
in the above and derive a same conclusion.
O

Lemma 4.9. There exists a closed ideal #-pair in (M) for every maximal ideal M
of X.

Proof. Suppose that C'is a closed ideal of X such that C ¢ M and D denotes the
sum of all closed ideals I in X such that I € M N C. We say that if C'//D has
no contains any nonzero closed ideal of X/D, then (C, D) is a closed ideal 0-pair;
otherwise, assume that F/D is a minimal closed ideal of X/D which is contained
in C/D. Now, it is easy to see that (F, D) is a closed ideal #-pair for M. O

Theorem 4.10. Let X be a BCTI-algebra, M be a maximal ideal of X and (C, D)
be a maximal closed ideal #-pair for M. Then D = Mx.

Proof. Tt is sufficient to show that if I is a closed ideal of X contained in M, then
I C D. Suppose on the contrary that I ¢ D. We note that if I C C, it follows that
D+1=C, because (C,D) € (M) and then X = M+C = M+ D+1 = M, which
is impossible. Hence I ¢ C and C is a proper ideal of C' 4 I. Next, we claim that
(C+1I,D+1I)e€(M). It is easy to see that the pair (C' + I, D + I) satisfies both
conditions (a) and (b) in the definition of §-pair. Now, let A be a closed ideal of X
such that D4+1 C AC C+ 1. Then (CNA)/D is a closed ideal of X/D contained
in C/D. Hence either CNA =D or CNA = C. To continue the proof, we consider
two cases:



A Note on Theta Pairs for BCI-algebras 349

CaseI. CN A = D. In this case we show that D+1 =A. Leta€e ACI+C.
Since I and C' are ideals of X, then by Theorem 2.5, we get (--- ((a*x1) *x2) -+ ) *
x, € I, for some n € N and z1, 2o, ..., z,, € C. It follows that there exists i € I such
that (-+- ((@a* 1) * x2) -+ ) x x,, = i. Hence by (BCI3), and (BCI6), we get

((---((@a*xi)*xg) -+ )*kxy) k@1 = ((-+- ((a*x1) *T2) -+ ) ) TYy) ki =17 % i = 0.

Since C' is an ideal of X and xy,...,z, € C, then a xi € C. Moreover a xi € A and
thus axi € ANC = D. Therefore a € D + I and hence A C D + I. Therefore
A=D+1.

Case II. CNA=C. Then C C Aandso I +C C A, because I C A. Hence
A=C+1.
Therefore (C' + I,D + I) € 0(M), which contradicts the maximality of (C,D) in
0(M). O

Corollary 4.11. Let M be a closed maximal ideal of a BCI-algebra X. Then
emaa:(M) = {(X7 M)}

Proof. Since M is a closed ideal of X, (X, M) € 6(M). Furthermore, if (4, B) is
another maximal #-pair for M in X, then A = X and so (X, B) is a maximal closed
ideal #-pair for M in X. Hence by Theorem 4.10 and assumption, B = Mx = M
and s0 0,0 (M) = {(X, M)}, as required. O

Lemma 4.12. Let X be a BCI-algebra, M < X and I be an ideal of X such that
I'C M. Then [0mae(M/I)| < |Omaz(M)].
Proof. By Lemma 4.8, the map
7 2 Omaz (M/T) = Omaz (M)
(C/I,D/I)~— (C,D)
is well-defined. Now, it is easy to see that the map 7 is one-to-one. O
As an application of Lemma 4.12, we get the following corollary.

Corollary 4.13. Let M be a closed maximal ideal of a BC'I-algebra X and I be
an ideal of X such that I C M. Then |04, (M/I)| = 1.

Proof. Tt is sufficient to observe that |0yax(M/I)| < |0max(M)| = 1 by Corollary
4.11 and Lemma 4.12. Thus |04, (M/I)| = 1, proving the result. O

In the following corollary, we assume that a2 (X) = Uy« x Omaz(M).

Corollary 4.14. Let X be a finite BCI-algebra with exactly n maximal ideals
M;(1 <i<mn). Then 04, (X) = {(X, M;) |1 <i<n}.
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Proof. Since X is a finite BCI-algebra, by Corollary 2.20, (M;), = M, for all
maximal ideal M; of X and so (X, M;) is the unique maximal 6-pair of M;, by
Corollary 4.11. Hence 0,0, (X) = {(X, M;) | 1 < i < n}, as required. O

As an application of Theorem 3.17, the following result states the useful prop-
erties of finite BCI-algebras.

Theorem 4.15. Let X be a finite BC'I-algebra. Then following statements are
holds:

(i) For each M <X and all maximal ideal §-pair (A, B) for M, Cx,p(A/B) # 0.

(ii) For each M < X there exists a maximal ideal f-pair (A, B) for M such that
X=A+M,AnMx = B and A/B is commutative.

(iii) For each M < X, there exists a maximal ideal #-pair (A, B) for M such that
X = A+ M and A/B is nilpotent.

Proof. (i) Let M <X and (A, B) be a maximal ideal 6-pair for M. By Lemma 4.8(ii),
there exists a maximal ideal §-pair (C, D) for M such that A/B = C/D. Now, by
assumption, Theorem 3.17 and Lemma 3.13, C'//D is a solvable ideal of X/D and
consequently (C'/D)™) is a closed ideal of X/D which is contained properly in C/D.
So, (C/D)M) = 0 because (C,D) € Opae(M), which implies that C'/D and then
A/B are commutative algebras. It follows that A/B C Cx,g(A/B), showing that
Cx/p(A/B) #0.

(ii) Since X is a solvable BCI-algebra, by Theorem 3.16, it has a series X =
Xo2 X1 2Xy2D -2 X, =0 of closed ideals in X such that X;_;/X} is a
commutative minimal ideal of X/ X}, for k = 1,...,n. Now let M be a maximal ideal
of X and there exists 7 € N such that X; C M but X;_; g M. We observe that
(Xi—laXi) S H(M) Then X; 1+ M =X and X;_1 N Mx = X;. If (Xi—hXi) €
Ormaz(M), then as X;_1/X; is commutative, the result holds; otherwise, by Lemma
4.8(ii), we choose an ideal f-pair (C, D) € 0,4, (M) such that (X;_1,X;) < (C, D)
and C/D = X,;_1/X;. It follows that C/D is commutative. Obviously, C'+ M = X
and C N Mx = D, as desired.

(iii) Follows from (ii). O

Corollary 4.16. Let X be a nilpotent BCI-algebra. Then for any M < X and
each maximal ideal #-pair (A4, B) for M, Z(X/B) # 0.

Proof. Since X is nilpotent, the proof follows at once from Lemma 3.8 and Theorem
3.10. 0

Theorem 4.17. Let X be a nilpotent BCI-algebra. Then for any M < X, there
exists a maximal closed ideal 6-pair (4, B) for M such that A/B C Z(X/B).



A Note on Theta Pairs for BCI-algebras 351

Proof. Let M be an arbitrary maximal ideal of X. If X/Mx has no proper closed
ideal, then obviously (X, My) is a maximal closed ideal #-pair for M such that
X/Mx = Z(X/Mx). In the contrary case, X/Mx contains a minimal closed ideal
N/Mx such that (N, Mx) is a maximal closed ideal #-pair for M. Now, using
the assumption and Theorem 3.10, (N/Mx) N Z(X/Mx) # 0 and consequently
N/Myx C Z(X/Mx), as required. O

In the following theorem, we give a necessary and sufficient condition on a fixed
BC-algebra X such that X to be nilpotent algebra.

Theorem 4.18. Let X be a BCI-algebra. Then following statements are equiva-
lent:

(i) X is nilpotent.

(ii) For any closed maximal ideal M of X, M is a commutative nilpotent ideal of
X.

Proof. (i)=(ii) Let M be any closed maximal ideal of X. Hence M is a nilpotent
ideal. Since Mx = M, by Corollary 4.11, |0pe:(M)| =1 and (X, M) is the unique
maximal @-pair of M. First, we assume that M is minimal. Then by Corollary
3.11, M C Z(X). Now if Z(X) = X, then X is nilpotent of class 1 and so M is
commutative, by Corollary 3.7. Moreover, if Z(X) = M, then by Theorem 4.17,
X/M C Z(X/M) and so

X/Z(X) = X/M = Z(X/M) = Z(X/Z(X)).

Thus X/Z(X) is of class 1 and so it is commutative. It follows that X(1) C Z(X) by
Theorem 2.8, and M = Z(X) is a commutative ideal of X, as desired. Next, let M
contains a minimal closed ideal N of X. Since (X, M) € 0,,42(M), by Lemma 4.8
and Corollary 4.13, we deduced that (X/N, M/N) is the unique maximal #-pair of
M/N. Thus (X/N)/(M/N) C Z((X/N)/(M/N)) by Theorem 4.17, and it follows
that X/M is commutative BCT-algebra by Theorem 3.6. Now M is commutative
ideal, by Theorem 2.6.

(ii)=(i) Since M is a commutative closed ideal of X, it follows that X/M is a
commutative BCI-algebra, and so X/M is nilpotent. Now the result follows from
Theorem 3.9. O
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