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Abstract. In this paper, we establish relations between the sets of strongly Cesàro

summable sequences of complex numbers for modulus functions f and g satisfying various

conditions. Furthermore, for some special modulus functions, we obtain relations between

the sets of strongly Cesàro summable and statistically convergent sequences of complex

numbers.

1. Introduction

The principle of statistical convergence arose from the first version of the mono-
graph of Zygmund [29] in 1935, and its definition was given in a short note by Fast
[12] and later independently by Schoenberg [25] where some specific characteristics
of statistical convergence were identified. In recent decades, statistical convergence
has arisen in several fields under different names. It appears in such fields as mea-
sure theory, approximation theory, Banach spaces, hopfield neural networks, locally
convex spaces, summability theory, ergodic theory, number theory, turnpike theory,
trigonometric series, Fourier analysis, and optimization. Such authors as Connor
[6], Fridy [13], Šalát [27], Rath and Tripathy [22], Et [10], Duman [9], León-Saavedra
et al. [18], Weisz [28] have explored statistical convergence from the perspective of
spaces of sequences; this is referred to as the theory of summability.
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In 1953, Nakano [21] presented the idea of a modulus function for the first
time. In 2014, with the benefit of an unbounded modulus function, Aizpuru et
al. [1] characterized the notion of f -density, and so introduced a new nonmatrix
convergence principle. Using this notion, Bhardwaj et al. [4] have recently ex-
tended statistical convergence to the notion of f -statistical boundedness. It has
been demonstrated that bounded sequences are definitely those sequences which
are f -statistically bounded for every unbounded modulus.

By using a modulus function, Maddox [20], Connor [7], Ruckle [23], Gosh and
Srivastava [14], Altin and Et [2], Sarma [24], Kamber [17] and others have con-
structed various sequence spaces. Further details and applications of the prin-
ciples of statistical convergence and strong Cesàro summability are available in
[5, 8, 11, 15, 16, 26].

2. Definitions and Preliminaries

In this study, the symbols c and ℓ∞ denote the spaces of convergent and bounded
sequences, respectively. The symbols C, R and N denote the sets of all complex,
real and natural numbers, respectively.

Definition 2.1. [27] Let U ⊂ N. The natural density of U and is defined as

δ (U) = lim
n→∞

1

n
|Un| ,

in the case the limit exists, where |Un| = |{u ≤ n : u ∈ U}| is the cardinality of the
indicated set.

It is obvious that δ (N) = 1 and δ (U) = δ (N)− δ (N\U) = 1− δ (N\U) and also
δ (U) = 0 if U is a finite subset of N.

Definition 2.2. [27] A sequence (xk) of complex numbers is statistically convergent
(or S−convergent) to l ∈ C if

lim
n→∞

1

n
|{k ≤ n : |xk − l| ≥ ε}| = 0

for every ε > 0. We write S − limxk = l or xk → l (S) in this particular case.
Throughout the paper, the class of all S−convergent sequences will be symbolized
by S. That is, we set

S =

{
x = (xk) : ∀ε > 0, lim

n→∞

1

n
|{k ≤ n : |xk − l| ≥ ε}| = 0 for some l ∈ C

}
.

Definition 2.3. [21] A function f : R+ ∪{0} → R+ ∪{0} is a modulus function (or
simply a modulus) if

1. f (h) = 0 ⇔ h = 0,
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2. f (h1 + h2) ≤ f (h1) + f (h2) for all h1, h2 ∈ R+ ∪ {0} ,

3. f is increasing,

4. f is continuous at 0 from the right.

From the above characteristics we clearly get that a modulus f is continuous
on R+ ∪ {0}. There are bounded and unbounded modulus functions. As an exam-
ple, f (h) = h

h+1 is a bounded modulus, but f (h) = log (h+ 1) is an unbounded
modulus. Furthermore, for every modulus f and each positive integer n, we have
f (nh) ≤ nf (h) from condition (2).

Lemma 2.4. [19] For any modulus f , lim
h→∞

f(h)
h exists and lim

h→∞
f(h)
h = inf

h∈(0,∞)

f(h)
h .

Definition 2.5. [1] Suppose f is an unbounded modulus. The f−density of a
subset U of N is defined by

δf (U) = lim
n→∞

1

f (n)
f (|{u ≤ n : u ∈ U}|) ,

if the limit exists.

The f−density becomes the natural density if we take f (h) = h. In the case of
the natural density, it is obvious that for any U ⊂ N, we have δ (U) + δ (N\U) = 1.
But this conclusion is different for f−density, i.e., δf (U) + δf (N\U) = 1 does not
have to be true, in general. To verify this situation, we may take U = {2, 4, 6, ...}
and the modulus f (h) = log (h+ 1), then we have δf (N\U) = 1 = δf (U). But
this situation happens for any unbounded modulus function when δf (U) = 0 (for
details see Remark 1.2 of [3]). For any finite U ⊂ N, f−density and natural density
have similar concepts, that is, δf (U) = 0 and so that δf (U) + δf (N\U) = 1.

We know that if U ⊂ N, δf (U) = 0 implies δ (U) = 0 for any unbounded
modulus function f (see [1]). The converse need not hold. Indeed, take f (h) =
log (h+ 1) and set U =

{
u2 : u ∈ N

}
. One gets that δ (U) = 0 but δf (U) = 1

2 .
Moreover, if U ⊂ N is finite and δ (U) = 0, then δf (U) = 0.

Definition 2.6. Suppose f is an unbounded modulus. Then, the sequence (xk) of
complex numbers is f−statistically convergent (or Sf−convergent) to l ∈ C if

lim
n→∞

1

f (n)
f (|{k ≤ n : |xk − l| ≥ ε}|) = 0

for every ε > 0. We write this as Sf − limxk = l or xk → l (Sf ). The class of all
Sf−convergent sequences will be symbolized by Sf throughout the paper, that is,

Sf =

{
x = (xk) : ∀ε > 0, lim

n→∞

1

f (n)
f (|{k ≤ n : |xk − l| ≥ ε}|) = 0 for some l ∈ C

}
.
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Note that Sf−convergence reduces to S−convergence in the case f (h) = h.

Lemma 2.7. Suppose (xk) is any sequence of complex numbers. If (xk) ∈ Sf , then
its Sf−limit is unique.

Definition 2.8. Suppose f is a modulus. Then, the sequence (xk) of complex
numbers is f−strongly Cesàro summable to l ∈ C if

lim
n→∞

1

n

n∑
k=1

f (|xk − l|) = 0.

The symbol wf denotes the class of all f−strongly Cesàro summable sequences,
that is,

wf =

{
x = (xk) : lim

n→∞

1

n

n∑
k=1

f (|xk − l|) = 0 for some l ∈ C

}
.

Note that this definition does not require the modulus function f to be un-
bounded.

The concepts of f−strong Cesàro summability and strong Cesàro summability
are the same in the case f (h) = h and the set of all strongly Cesàro summable
sequences will be denoted by w, that is, wf will reduce to w if f (h) = h.

3. Main Results

In this section, we give the main results of the study.

3.1. Modulus functions and strong Cesàro summability

Theorem 3.1. Suppose f and g are any modulus functions. If sup
h∈(0,∞)

f(h)
g(h) < ∞,

then wg ⊂ wf .

Proof. Assume that p = sup
h∈(0,∞)

f(h)
g(h) < ∞. Then, we have f(h)

g(h) ≤ p and so that

f (h) ≤ pg (h) for every h ∈ [0, ∞) . Now, it is apparent that p > 0 and if x = (xk)
is g−strongly Cesàro summable to l, we may write

1

n

n∑
k=1

f (|xk − l|) ≤ 1

n

n∑
k=1

pg (|xk − l|).

Taking the limits on both sides as n → ∞, we obtain that x ∈ wg implies x ∈ wf .
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Remark 3.2. The converse of Theorem 3.1 does not have to be correct for every

modulus functions f and g such that sup
h∈(0,∞)

f(h)
g(h) < ∞, in general. The example

below demonstrates that at least for certain specific modulus functions, the inclusion
wg ⊂ wf can be strict.

Example 3.3. Define the sequence x = (xk) as

xk =


k if k = n3

0 if k ̸= n3

n ∈ N,

and take the modulus functions f (h) = h
h+1 and g (h) = h. Then, sup

h∈(0,∞)

f(h)
g(h) =

1 < ∞ and so that wg ⊂ wf . By using the equality f (0) = 0, we have

1

n

n∑
k=1

f (|xk|) =
1

n

n∑
k=1

k=m3

f (k) +
1

n

n∑
k=1

k ̸=m3

f (0)

=
1

n

n∑
k=1

k=m3

k

1 + k

<
1

n

n∑
k=1

k=m3

1 ≤
3
√
n

n
.

Since
3
√
n

n → 0 as n → ∞, we get x ∈ wf . However,

1

n

n∑
k=1

g (|xk|) =
1

n

n∑
k=1

g (xk)

=
1

n

n∑
k=1

k=m3

k +
1

n

n∑
k=1

k ̸=m3

g (0)

=
1

n

(
13 + 23 + 33 + ...+ i3

)
, max

i∈N
i3 ≤ n

=
1

n

[
i (i+ 1)

2

]2
≥ 1

n

[
([ 3
√
n]− 1) ([ 3

√
n])

2

]2
.

Since 1
n

[
([ 3

√
n]−1)([ 3

√
n])

2

]2
→ ∞ as n → ∞ so that x /∈ wg, where [r] denotes an

integral part of the real number r. Hence, x ∈ wf − wg and the inclusion wg ⊂ wf

is strict.
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Theorem 3.4. Suppose f and g are any modulus functions. If inf
h∈(0,∞)

f(h)
g(h) > 0,

then wf ⊂ wg.

Proof. Suppose that q = inf
h∈(0,∞)

f(h)
g(h) > 0. Then, we have f(h)

g(h) ≥ q and so that

qg (h) ≤ f (h) for every h ∈ [0, ∞) . Now, if x = (xk) is f−strongly Cesàro
summable to l, we may write

1

n

n∑
k=1

g (|xk − l|) ≤ 1

q

1

n

n∑
k=1

f (|xk − l|).

Taking the limits on both sides as n → ∞, we obtain that x ∈ wf implies x ∈ wg

and this fulfills the proof.

Remark 3.5. The converse of Theorem 3.4 does not have to be correct for every

modulus functions f and g if inf
h∈(0,∞)

f(h)
g(h) > 0, in general. For this, recall the

sequence x = (xk) in Example 3.3 and take the modulus functions f(h) = h and

g(h) = h
h+1 . Then, inf

h∈(0,∞)

f(h)
g(h) > 0 and x ∈ wg but x /∈ wf . This shows that at

least for certain specific modulus functions, the inclusion wf ⊂ wg can be strict.

The outcome below is a result of Theorem 3.1 and Theorem 3.4.

Corollary 3.6. Suppose f and g are any modulus functions. If

0 < inf
h∈(0,∞)

f (h)

g (h)
≤ sup

h∈(0,∞)

f (h)

g (h)
< ∞,

then wf = wg.

Corollary 3.7. Suppose f is a modulus function. If inf
h∈(0,∞)

f(h)
h > 0, then wf = w.

Proof. Since w ⊂ wf for any modulus function by the first part of Theorem 3.4
of [3] for the case α = 1, taking g (h) = h in Theorem 3.4, we obtain wf ⊂ w if

inf
h∈(0,∞)

f(h)
h > 0. Therefore, wf = w if inf

h∈(0,∞)

f(h)
h > 0.

3.2. Relations between statistical convergence and strong Cesàro summa-
bility according to modulus functions

Theorem 3.8. suppose f and g are unbounded modulus functions. If inf
h∈(0,∞)

f(h)
g(h) >

0 and lim
h→∞

g(h)
h > 0, then every f−strongly Cesàro summable sequence is

g−statistically convergent, that is, wf ⊂ Sg.
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Proof. Suppose that β = inf
h∈(0,∞)

f(h)
g(h) > 0. Then, we have f(h)

g(h) ≥ β and so that

βg (h) ≤ f (h) for every h ∈ [0, ∞) . Now, if x = (xk) is f−strongly Cesàro
summable to l, we may write

1

n

n∑
k=1

f (|xk − l|) ≥ β
1

n

n∑
k=1

g (|xk − l|) ≥ β
1

n

n∑
k=1

|xk−l|≥ε

g (|xk − l|)

≥ β
1

n
|{k ≤ n : |xk − l| ≥ ε}| g (ε)

≥ β
1

n
g (|{k ≤ n : |xk − l| ≥ ε}|) g (ε)

g (1)

=
g (|{k ≤ n : |xk − l| ≥ ε}|)

g (n)

g (n)

n

g (ε)

g (1)
β.

Taking the limits on both sides as n → ∞, we obtain that x ∈ wf implies x ∈ Sg

since lim
h→∞

g(h)
h > 0.

Remark 3.9. The converse of Theorem 3.8 does not have to be correct for every

unbounded modulus functions f and g if inf
h∈(0,∞)

f(h)
g(h) > 0 and lim

h→∞
g(h)
h > 0, in

general. The following illustration can demonstrate that at least for certain specific
unbounded modulus functions, the inclusion wf ⊂ Sg can be strict.

Example 3.10. Recall the sequence x = (xk) in Example 3.3 and take the modulus

functions f(h) = g(h) = h. Then, we have inf
h∈(0,∞)

f(h)
g(h) > 0 and lim

h→∞
g(h)
h > 0 and

also
1

g (n)
g (|{k ≤ n : |xk − 0|}|) ≤ g ( 3

√
n)

g (n)
.

By taking the limits on both sides as n → ∞, we get that x ∈ Sg. However, x /∈ wf

as shown in Example 3.3.

The outcome below is acquired by taking g (h) = f (h) in Theorem 3.8.

Corollary 3.11. Suppose f is an unbounded modulus. If lim
h→∞

f(h)
h > 0, then every

f−strongly Cesàro summable sequence is f−statistically convergent.

Remark 3.12. Corollary 3.11 was given with the extra condition “f (xy) ≥
cf (x) f (y) for all x ≥ 0, y ≥ 0 and some positive number c” in [3]. It seems
that this extra condition is not necessary and it should be neglected.

The outcome below is acquired by taking g (h) = h in Theorem 3.8 (see also in
[3]).

Corollary 3.13. Suppose f is an unbounded modulus. If inf
h∈(0,∞)

f(h)
h > 0, then

every f−strongly Cesàro summable sequence is statistically convergent.
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The outcome below is acquired by taking f (h) = h in Corollary 3.13, which is
the first part of Theorem 2.1 of [6], for the case q = 1.

Corollary 3.14. A strongly Cesàro summable sequence is statistically convergent.

Theorem 3.15. Suppose f and g are unbounded modulus functions. Then, every
bounded and f−statistically convergent sequence is g−strongly Cesàro summable
sequence, i.e., ℓ∞ ∩ Sf ⊂ wg.

Proof. Assuming that f and g are unbounded modulus functions. Since Sf ⊂ S by
the first part of Corollary 2.2 of [1], and since ℓ∞ ∩ S ⊂ w by the second part of
Theorem 2.1 of [6], then we have ℓ∞ ∩ Sf ⊂ ℓ∞ ∩ S ⊂ w, that is, ℓ∞ ∩ Sf ⊂ w. On
the other hand, since w ⊂ wg for any modulus g by the first part of Theorem 3.4
of [3] for the case α = 1, it follows that ℓ∞ ∩ Sf ⊂ wg.

Remark 3.16. The converse of Theorem 3.15 does not have to be correct for every
unbounded modulus functions f and g, in general. The following example demon-
strates this situation.

Example 3.17. Let us consider the sequence x = (xk) as

xk =


1 if k = n2

0 if k ̸= n2

n ∈ N,

and take the modulus functions g (h) = f (h) = log (h+ 1). Then, by using the
equality g (0) = 0, we have

1

n

n∑
k=1

g (|xk − 0|) = 1

n

n∑
k=1

g (xk) =
1

n

n∑
k=1
k=n2

g (1) +
1

n

n∑
k=1
k ̸=n2

g (0)

=
1

n

n∑
k=1
k=n2

log 2 ≤
√
n

n
log 2 → 0 as n → ∞.

So that x ∈ wg. Although,

lim
n→∞

1

f(n)
f (|{k ≤ n : |xk| ≥ ε}|)

≥ lim
n→∞

1

f(n)
f
(√

n− 1
)
= lim

n→∞

log (
√
n)

log(n+ 1)
=

1

2
̸= 0.

That is, x /∈ Sf . This means that the inclusion ℓ∞ ∩ Sf ⊂ wg is strict.

The following inclusions are a result of Theorem 3.15.
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Corollary 3.18. If f is any unbounded modulus, then we have

1. ℓ∞ ∩ Sf ⊂ wf ,

2. ℓ∞ ∩ Sf ⊂ w, and

3. ℓ∞ ∩ S ⊂ wf .
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