DOI QR코드

DOI QR Code

Analysis of Activation Energy of Thermal Aging Embrittlement in Cast Austenite Stainless Steels

주조 오스테나이트 스테인리스강의 열취화 활성화에너지 분석

  • Gyeong-Geun Lee ;
  • Suk-Min Hong ;
  • Ji-Su Kim ;
  • Dong-Hyun Ahn ;
  • Jong-Min Kim
  • 이경근 (한국원자력연구원 재료안전기술연구부) ;
  • 홍석민 (한국원자력연구원 재료안전기술연구부) ;
  • 김지수 (한국원자력연구원 재료안전기술연구부) ;
  • 안동현 (한국원자력연구원 재료안전기술연구부) ;
  • 김종민 (한국원자력연구원 재료안전기술연구부)
  • Received : 2024.05.31
  • Accepted : 2024.06.11
  • Published : 2024.06.30

Abstract

Cast austenitic stainless steels (CASS) and austenitic stainless steel weldments with a ferrite-austenite duplex structure are widely used in nuclear power plants, incorporating ferrite phase to enhance strength, stress relief, and corrosion resistance. Thermal aging at 290-325℃ can induce embrittlement, primarily due to spinodal decomposition and G-phase precipitation in the ferrite phase. This study evaluates the effects of thermal aging by collecting and analyzing various mechanical properties, such as Charpy impact energy, ferrite microhardness, and tensile strength, from various literature sources. Different model expressions, including hyperbolic tangent and phase transformation equations, are applied to calculate activation energy (Q) of room-temperature impact energies, and the results are compared. Additionally, predictive models for Q based on material composition are evaluated, and the potential of machine learning techniques for improving prediction accuracy is explored. The study also examines the use of ferrite microhardness and tensile strength in calculating Q and assessing thermal embrittlement. The findings provide insights for developing advanced prediction models for the thermal embrittlement behavior of CASS and the weldments of austenitic steels, contributing to the safety and reliability of nuclear power plant components.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (RS-2022-00144399).

References

  1. Chopra, O. K., 2016, "Estimation of Fracture Toughness of Cast Stainless Steels during Thermal Aging in LWR Systems," U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-4513 Rev.2.
  2. Chopra, O. K., 2018, "Effects of Thermal Aging on Fracture Toughness and Charpy-Impact Strength of Stainless Steel Pipe Welds," U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-6428 Rev.1.
  3. Mager, T., Petrequin, P. and Slama, G., 1983, "Effect of Aging on Mechanical Properties of Austenitic Stainless Steel Castings and Welds," International Seminar on Assuring Structural Integrity of Steel Reactor Pressure Boundary Components, Monterey, CA, Aug. 29-30.
  4. Chopra, O. K. and Ayrault, G., 1985, "Aging Degration of Cast Stainless Steel: Status and Program," Nucl. Eng. Des., Vol. 86, pp. 69-77. doi: https://doi.org/10.1016/0029-5493(85)90210-9
  5. McConnell, P., Sheckherd, W. and Norris, D., 1989, "Properties of Thermally Embrittled Cast Duplex Stainless Steel," J. Mater. Eng., Vol. 11, pp. 227-236. doi:https://doi.org/10.1007/BF02834840
  6. Bonnet, S., Bourgoin, J., Champredonde, J., Guttmann, D. and Guttmann, M., 1990, "Relationship between Evolution of Mechanical Properties of Various Cast Duplex Stainless Steels and Metallurgical and Aging Parameters: Outline of Current EDF programmes," Mater. Sci. Technol., Vol. 6, pp. 221-229. doi:https://doi.org/10.1179/mst.1990.6.3.221
  7. Li, S., Wang, Y., Wang, X. and Xue, F., 2014, "G-phase Precipitation in Duplex Stainless Steels after Long-term Thermal Aging: A High-resolution Transmission Electron Microscopy Study," J. Nucl. Mater., Vol. 452, pp. 382-388. doi:https://doi.org/10.1016/j.jnucmat.2014.05.069
  8. Kong, B. S., Hong, S., Jang, C. and Kim, M.-W., 2017, "Numerical Analysis on Feedback Mechanism of Supersonic Impinging Jet using Large Eddy Simulation," Trans. of the KPVP, Vol. 13, No. 1, pp. 92-100. doi:https://doi.org/10.20466/KPVP.2017.13.1.092
  9. Choi, M.-J. and Kim, S.-W., 2023, "Analysis of Oxide Layers in Phase Boundary Crack of Cast Austenitic Stainless Steel," Trans. of the KPVP, Vol. 19, No. 2, pp. 171-178. doi:http://dx.doi.org/10.20466/KPVP.202.19.2.171
  10. Chopra, O. K. and Sather, A., 1990, "Initial Assessment of the Mechanisms and Significance of Low-Temperature Embrittlement of Cast Stainless Steels in LWR Systems," U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-5385.
  11. Chopra, O. K. and Sather, A., 1994, "Tensile-Property Characterization of Thermally Aged Cast Stainless Steels," U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-6142.
  12. Chung, H. M., 1992, "Aging and Life Prediction of Cast Duplex Stainless Steel Components," Int. J. Pres. Ves. Piping, Vol. 50, pp. 179-213. doi:https://doi.org/10.1016/0308-0161(92)90037-G
  13. Byun, T. S., Collins, D. A., Lach, T. G. and Carter, E. L., 2020, "Degradation of Impact Toughness in Cast Stainless Steels during Long-term Thermal Aging," J. Nucl. Mater., Vol. 542, 152524. doi:https://doi.org/10.1016/j.jnucmat.2020.152524
  14. Chandra, K., Kain, V., Bhutani, V., Raja, V. S., Tewari, R., Dey, G. K. and Chakravartty, J. K., 2012, "Low Temperature Thermal Aging of Austenitic Stainless Steel Welds: Kinetics and Effects on Mechanical Properties," Mater. Sci. Eng. A, Vol. 534, pp. 163-175. doi:https://doi.org/10.1016/j.msea.2011.11.055
  15. Trautwein, A. and Gysel, W., 1982 "Influence of Long-Time Aging of CF8 and CF8M Cast Steel at Temperatures Between 300 and 500℃ on Impact Toughness and Structural Properties," Stainless Steel Castings. ASTM STP 756, American Society for Testing and Materials, pp. 165-189.
  16. Pumphrey, P. H. and Akhurst, K. N., 1990, "Aging Kinetics of CF Stainless Steel in Temperature range 300-400℃," Mater. Sci. Technol, Vol. 6, pp. 211-219. doi:https://doi.org/10.1179/mst.1990.6.3.211
  17. Tucker, J. D., Miller, M. K. and Young, G. A., 2015, "Assessment of Thermal Embrittlement in Duplex Stainless Steels 2003 and 2205 for Nuclear Power Applications," Acta. Mater., Vol. 87, pp. 15-24. doi:http://doi.org/10.1016/j.actamat.2014.12.012
  18. Chopra, O. K. and Chung H. M., 1989, "Cast Stainless Steel Aging: Mechanisms and Predictions," 17th Water Reactor safety Information Meeting, Rockville, MD., Oct. 23-25.
  19. Williams, C. and Rasmussen, C.E., 1995, "Gaussian Processes for Regression," Proceedings of the 8th International Conference on Neural Information Processing Systems, Cambridge, MA, USA, pp. 514-520.
  20. Liu, T., Wang, W., Qiang, W. and Shu, G., 2018, "Mechanical Properties and Kinetics of Thermally Aged Z3CN20.09M Cast Duplex Stainless Steel," Inter. J. Min. Met. Mater., Vol. 25, No. 10, pp. 1148-1155. doi:https://doi.org/10.1007/s12613-018-1666-8
  21. Kong, B. S., Shin, J., Subramanian, G. O., Chen, J., Jang, C., Na Ye., Jang, D., Lee, H. J. and Yang, J.-S., 2020, "Evaluatioxn of Thermal Ageing Activation Energy of δ-ferrite in an Austenitic Stainless Steel Weld using Nanopillar Compression Test," Scripta Mater., Vol., 186, pp. 236-241. doi:https://doi.org/10.1016/j.scriptamat.2020.05.046