DOI QR코드

DOI QR Code

연구용 원자로의 건전성 평가를 위한 수치해석적 중성자 조사 재료변형 예측기법 개발

A Numerical Technique for Predicting Deformation due to Neutron Irradiation for Integrity Assessment of Research Reactors

  • 박준근 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 석태현 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 허남수 (서울과학기술대학교 기계시스템디자인공학과)
  • Jun-Geun Park ;
  • Tae-Hyeon Seok ;
  • Nam-Su Huh
  • 투고 : 2024.05.24
  • 심사 : 2024.06.14
  • 발행 : 2024.06.30

초록

Research reactors are operated under ambient temperature and atmospheric pressure, which is much less severe conditions compared to those in typical nuclear power plants. Due to the high temperature, heat resistant materials such as austenite stainless steel should be used for the reactors in typical nuclear power plants. Whereas, as the effect of temperature is low for research reactors, materials with high resistance to neutron irradiation, such as zircaloy and beryllium, are used. Therefore, these conditions should be considered when performing integrity assessment for research reactors. In this study, a computational technique through finite element (FE) analysis was developed considering the operating conditions and materials of research reactor when conducting integrity assessment. Neutron irradiation analysis techniques using thermal expansion analysis were proposed to consider neutron irradiation growth and swelling in zirconium alloys and beryllium. A user subroutine program that can calculate the strain rate induced by neutron irradiation creep was developed for use in the commercial analysis program Abaqus. To validate the proposed technique and the user subroutine, FE analysis results were compared with hand-calculation results, and showed good agreement. Consequently, developed technique and user subroutine are suitable for evaluating structural integrity of research reactors.

키워드

참고문헌

  1. Chopra, O. K. and Rao, A. S., 2011, "A Review of Irradiation Effects on LWR Core Internal Materials-IASCC Susceptibility and Crack Growth Rates of Austenitic Stainless Steels," Journal of Nuclear Materials, Vol. 409, No.3, pp. 235-256. doi:https://doi.org/10.1016/j.jnucmat.2010.12.001
  2. Scott, P., 1994, "A Review of Irradiation Assisted Stress Corrosion Cracking," Journal of Nuclear Materials, Vol. 211, No. 2, pp. 101-122. doi:https://doi.org/10.1016/0022-3115(94)90360-3
  3. Garner, F. A., Toloczko, M. B. and Sencer, B. H., 2000, "Comparison of Swelling and Irradiation Creep Behavior of Fcc-austenitic and Bcc-ferritic/martensitic Alloys at High Neutron Exposure," Journal of Nuclear Materials, Vol. 276, No. 1-3, pp. 123-142. doi:https://doi.org/10.1016/S0022-3115 (99)00225-1
  4. Kim, J. S., Jhung, M. J., Park, J. S. and Oh, Y. J., 2013, "Development of User Subroutine Program Considering Effect of Neutron Irradiation on Mechanical Material Behavior of Austenitic Stainless Steels," Transactions of the Korean Society of Mechanical Engineers A, Vol. 37, No. 9, pp. 1127-1132. doi:https://doi.org/10.3795/KSME-A.2013.37.9.1127
  5. Seo, C. G., Kim, H. C., Park, H. J. and Chae, H. T., 2013, "Innovative Design Concepts for The KIJANG Research Reactor," In Proceedings of the Korea Nuclear Society Spring Meeting, Korea.
  6. Cho, M. S., Choo, K. N. and Yang, S. W., 2016, "Material Irradiation Technology Using Capsules at HANARO," Nuclear Technology, Vol. 193, No. 2, pp. 330-339. doi:https://doi.org/10.13182/NT15-19
  7. Park, Y. C. and Ryu, J. S., 2007, "Design Requirements of an Advanced HANARO Reactor Core Cooling System," Korea Atomic Energy Research Institute, KAERI/TR-3470.
  8. Park, C., Kim, Y. K., Lee, B. C., Ryu, J. S. and Kwon, Y. S., 2015, "Overview of KJRR design features," The 11th National Conference on Nuclear Science and Technology Agenda and Abstracts, Viet Nam.
  9. Park, C., Lee, B. C., Ryu, J. S. and Kim, Y. K., 2015, "Overall Design Features and Key Technology Development for KJRR," Transactions Korean Nuclear Society Fall Meeting, Korea.
  10. Choo, K. N., Cho, M. S., Jun, B. H., Kim, C. J. and Park, S. J., 2014, "Neutron Irradiation of Electronic Materials at HANARO," Journal of Applied Mathematics and Physics, Vol. 2, No. 9, pp. 837-842. doi:http://dx.doi.org/10.4236/jamp.2014.29093
  11. Adamson, R. B., Coleman, C. E. and Griffiths, M., 2019, "Irradiation Creep and Growth of Zirconium Alloys: A Critical Review," Journal of Nuclear Materials, Vol. 521, pp. 167-244. doi:https://doi.org/10.1016/j.jnucmat.2019.04.021
  12. Chung, J. H., Cho, Y. G. and Kim, J. I., 2012, "Irradiation Creep and Growth Behavior of Zircaloy-4 Inner Shell of HANARO," Proceedings of the 4th international symposium on Material Testing Reactors, Oarai, Dec. 5-9, pp. 179-183.
  13. Scaffidi-Argentina, F., Longhurst, G. R., Shestakov, V. and Kawamura, H., 2000, "Beryllium R&D for Fusion Applications," Fusion Engineering Design, Vol. 51-52, pp. 23-41. doi:https://doi.org/10.1016/S0920-3796(00)00312-4
  14. Gelles, D. S., Sernyaev, G. A., Dalle Donne, M. and Kawamura, H., 1994, "Radiation Effects in Beryllium Used for Plasma Protection," Journal of Nuclear Materials, Vol. 212-215, pp. 29-38. doi:https://doi.org/10.1016/0022-3115(94)90030-2
  15. Choo, Y. S., Kim, G., Sun, J. O. and Yoo, Y. S., 2016, "Irradiation Swelling Analysis of Beryllium Reflectors in KJRR," Transactions of the Korean Society Autumn Meeting, Korea.
  16. Mai, N. N. T., Kim, K., and Lee, D., 2023, "Calculation of Displacement per Atom (DPA) in STREAM," Transactions of the Korean Nuclear Society Spring Meeting, Jeju, May pp. 17-19.
  17. Norgett, M. J., Robinson, M. T. and Torrens, I. M., 1975, "A Proposed Method of Calculating Displacement Dose Rates," Nuclear Engineering Design, Vol. 33, No. 1, pp. 50-54. doi:https://doi.org/10.1016/0029-5493(75)90035-7
  18. Andreev, D. V., Bespalov, V. N., Birjukov, A. J., Gurovich, B. A. and Platonov, P. A., 1996, "Post-irradiation Studies of Beryllium Reflector of Fission Reactor Examination of Gas Release, Swelling and Structure of Beryllium under Annealing," Journal of Nuclear Materials, Vol. 233-237, pp. 880-885. doi:https://doi.org/10.1016/S0022-3115(96)00289-9
  19. Kim, K. Y., Kim, H. Y., Ji, S. K., Jang, M. H. and Kang, C. M., 1999, "Preliminary Evaluation of Radiation Shielding Design for Near-core Model of SMART," In Proceedings of the Korean Nuclear Society Conference, pp. 373-373.
  20. Haertling, C. L., 2020, "Beryllium (Be) Handbook," Los Alamos National Laboratory, Los Alamos, NM, LA-UR-20-23733.