DOI QR코드

DOI QR Code

Effects of Plastic Deformation on Surface Properties and Microstructure of Alloy 690TT Steam Generator Tube

증기발생기 전열관 Alloy 690TT의 소성변형이 표면특성 및 미세조직에 미치는 영향

  • Soon-Hyeok Jeon ;
  • Ji-Young Han ;
  • Hee-Sang Shim ;
  • Sung-Woo Kim
  • 전순혁 (한국원자력연구원 재료안전기술연구부) ;
  • 한지영 (한국원자력연구원 재료안전기술연구부) ;
  • 심희상 (한국원자력연구원 재료안전기술연구부) ;
  • 김성우 (한국원자력연구원 재료안전기술연구부)
  • Received : 2024.05.20
  • Accepted : 2024.05.30
  • Published : 2024.06.30

Abstract

Denting of steam generator (SG) tube is defined as the reduction in tube diameter due to the stresses exerted by the corrosion products formed on the outer diameter surface. This phenomenon is mostly observed in the crevices between SG tube and the top-of tubesheet or tube support plate. Despite the replacement of SG tube with Alloy 690, which has better corrosion resistance than Alloy 600, the denting of SG tube still remains a potential problem that could decrease the SG integrity. Deformation of SG tube by denting phenomenon can affect the surface properties and microstructure of SG tube. In this study, the effects of plastic deformation on surface properties and microstructure of Alloy 690 thermally treated (TT) tube was investigated by using the various analysis techniques. The plastic deformation of Alloy 690 increased the surface roughness and area. Many surface defects such as ripped surface and micro-cracks were observed on the deformed Alloy 690TT specimen. Based on the electron backscatter diffraction analysis, the dislocation density of deformed SG tube increased compared to non-deformed SG tube. In addition, the effects of changes in surface properties and microstructure of SG tube on general corrosion behavior were discussed.

Keywords

Acknowledgement

본 연구는 한국연구재단을 통해 과학기술정보통신부 연구개발사업(2021M2E4A1037979, RS-2022-00143316)의 지원을 받아 수행되었음.

References

  1. Vepsalainen, M. and Saario, T., 2010, "Magnetite Dissolution and Deposition in NPP Secondary Circuit," VTT Technical Research Centre of Finland, Espoo, Finland, VTT-R-09735-10. 
  2. Shin, K. S., Moon, Y. S., and Min, K. M., 2011, "Development of ETSS for SG Secondary Side Loose Part Signal Detection and Characterization," Trans. of the KPVP, Vol. 7, No. 3, pp. 61-66. 
  3. Kain, V., Roychowdhury, S., Ahmedabadi, P., and Barua, D.K., 2011, "Flow Accelerated Corrosion: Experience from Examination of Components from Nuclear Power Plants," Eng. Fail. Anal., Vol. 18, pp. 2028-2041. doi:https://doi.org/10.1016/j.engfailanal.2011.06.007 
  4. Cho, M. K. and Cho, K. H., 2021, "A Stress Analysis of Wall-Thinned Feedwater Ring in Nuclear Power Plant," Trans. of the KPVP, Vol. 17, No. 1, pp. 56-63. 
  5. Trevin, S., 2012, Flow Accelerated Corrosion (FAC) in Nuclear Power Plant Components, in: D. Feron (Ed.), Nuclear Corrosion Science and Engineering, Woodhead Publishing Limited, Sawston. doi:https://doi.org/10/1533/9780857095343.2.186  10/1533/9780857095343.2.186
  6. Tapping, R. L., Turner, C. W., and Thomson, R. H., 1991, "Steam Generator Deposits-A Detailed Analysis and Some Inferences," Corrosion, Vol. 47, pp. 489-495. doi:https://doi.org/10.5006/1.3585283 
  7. Suk, D. H., Oh, C. H., and Lee, J. W., 2010, "A Study on ODSCC of OPR 1000 Steam Generator Tube," Trans. of the KPVP, Vol. 6, No. 2, pp. 16-19. 
  8. Cho, N, C., Shin, D. M., and Kim, Y. S., 2017, "A Study on the Relationship between Steam Generator Fouling and the Electric Powr," Trans. of the KPVP, Vol. 13, No. 2, pp. 31-37. 
  9. Yang, G., Pointeau, E., Tevissen, E., and Chagnes, A., 2017, "A Review on Clogging of Recirculating Steam Generators in Pressurized-Water Reactors," Prog. Nucl. Energ., Vol. 97, pp. 182-196. doi:https://doi.org/10.1016/j.pnucene.2017.01.010 
  10. Cho, N. C., Kang, Y. S. Kang, Kim, H. N., and Lee, K.-H., 2017, "Degradation Characteristics of Tubes in the Steam Generator Tubesheet," Trans. of the KPVP, Vol. 10, No. 1, pp. 7-14. doi:https://doi.org/10.20466/KPVP.2014.10.1.007 
  11. Paine, J. P. N., Hobart, S. A., and Sawochka, S. G., 1991, "Predicting Steam Generator Crevice Chemistry," In Proceedings of the 5th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Monterey, CA, USA, Aug. 25-29, pp. 739-744. 
  12. Millet, P. J. and Fenton, J. M., 1991, "A Detailed Model of Localized Concentration Processes in Porous Deposits of SGs," In Proceedings of the 5th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Monterey, CA, USA, Aug. 25-29, pp. 745-751. 
  13. Plonski, I. J., 1997, "Effect of Bare Metal Surface on the Dissolution in Aqueous Citrate Solutions of Magnetite Films on Carbon Steel," J. Appl. Electrochem. Vol. 27, pp. 1184-1192. doi:https://doi.org/10.1023/A:1018471617720 
  14. Wolfe, R. and Feldman, H., 2014, "Steam Generator Management Program: PWR Steam Generator Top-of-Tubesheet Denting History and Causes," Electric Power Research Institute, Palo Alto, CA, TR-3002002197. 
  15. Kim, H. -D., Park, S. -K., Yim, C. J., and Chung H. S., 2010, "Root Cause Analysis of Axial ODSCC of Steam Generators Tubes of OPR1000," Trans. of the KPVP, Vol. 6, No. 1, pp. 83-88. 
  16. Staehle, R. W. and Gorman, J. A., 2003, "Quantitative Assessment of Submodes of Stress Corrosion Cracking on the Secondary Side of Steam Generator Tubing in Pressurized Water Reactors: Part 1," Corrosion, Vol. 59, pp. 931-994. doi:https://doi.org/10.5006/1.3277522 
  17. Cullity, B. D., 1978, Elements of X-ray Diffraction, Addision-Wesley: Reading, MA, USA. 
  18. Gao, H., Huang, Y., Nix, W. D., and Hutchinson, J. W., 1999, "Mechanism-based Strain Gradient Plasticity-I. Theory," J. Mech. Phys. Solids, Vol. 47, pp. 1239-1263. doi:https://doi.org/10.1016/S0022-5096(98)00103-3 
  19. Oh, S., Kim, D., Kim, K., Kim, D. -I., Chung, W., and Shin, B. -H., 2023, "The Effect of Surface Roughness on Repassivation and Pitting Corrosion of Super Duplex Stainless Steel UNS S 32760, Int. J. Electrochem. Sc., Vol. 18, 100351. doi:https://doi.org/10.1016/j.ijoes.2023.100351 
  20. Ashcroft, N. W., 1976, Solid State Physics, Saunders College Publishing, New York, USA. 
  21. Nowak, W. J., Wierzba, B., and Sieniawski, J., "Surface Preparation Effect on Oxidation Kinetics of Ni-base Superalloy," J. Phys. Conf. Ser., Vol. 936, 012002. doi:https://doi.org/10.1088/1742-6596/936/1/012002 
  22. Persaud, S. Y., Ramamurthy, S., and Newman, R. C., 2015, "Internal Oxidation of Alloy 690 in Hydrogenated Steam," Corros. Sci., Vol. 90, pp. 606-613. doi:https://doi.org/10.1016/j.corsci.2014.11.006 
  23. Kim, K. M., Shim, H. -S., Seo, M. J., and Hur, D. H., 2015, "Corrosion Control of Alloy 690 by Shot Peening and Electropolishing under Simulated Primary Water Condition of PWRs," Adv. Mater. Sci. Eng., Vol. 1, pp. 1-9. doi:https://doi.org/10.1155/2015/357624 
  24. Wang, Y., Jin, J., Zhang, M.. Liu, F., Wang, X., Gong, P., and Tang, X., 2022, "Influence of Plastic Deformation on the Corrosion Behavior of CrCoFeMnNi High Entropy Alloy," J. Alloy. Compd., Vol. 891, 161822. doi:https://doi.org/10.1016/j.jallcom.2021.161822 
  25. Zhao, M., Wu, H., Lu, J., Sun, G., and Du, L., 2022, "Effect of Grain Size on Mechanical Property and Corrosion Behavior of a Metastable Austenitic Stainless Steel," Mater. Charact., Vol. 194, 112360. doi:https://doi.org/10.1016/j.matchar.2022.112360 
  26. Ura-Binczyk, E., 2021, "Effect of Grain Refinement on the Corros-ion Resistance of 316L Stainless Steel", Materials, Vol. 14, 7517. doi:https://doi.org/10.3390/mal4247517 
  27. Dong, S., Chen, X. Chen, Plante, E. C. L., Gussev, M., and Leonard, K., 2020, "Elucidating the Grain-orientation Dependent Corrosion Rates of Austenitic Stainless Steels," Mater. Design, Vol. 191, 108583. doi:https://doi.org/10.1016/j.matdes.2020.108583