DOI QR코드

DOI QR Code

Anti-Melanogenic Activity of Undecylprodigiosin, a Red Pigment Isolated from a Marine Streptomyces sp. SNA-077

  • Chaeyoung Lee (Department of Chemistry and Nanoscience, Ewha Womans University) ;
  • Jung Min Park (Department of Beauty and Cosmetic Science, Eulji University) ;
  • Prima F. Hillman (Department of Chemistry and Nanoscience, Ewha Womans University) ;
  • Minyi Yoo (Department of Chemistry and Nanoscience, Ewha Womans University) ;
  • Hye Yeon Kim (Department of Beauty and Cosmetic Science, Eulji University) ;
  • Chang-Seok Lee (Department of Beauty and Cosmetic Science, Eulji University) ;
  • Sang-Jip Nam (Department of Chemistry and Nanoscience, Ewha Womans University)
  • 투고 : 2023.11.28
  • 심사 : 2024.02.14
  • 발행 : 2024.07.01

초록

Bioassay and HPLC-UV guided fractionations of the crude extract of marine-derived Streptomyces sp. SNA-077 have led to the isolation of a red pigment, undecylprodigiosin (1). The chemical structure of undecylprodigiosin (1) was revealed by the interpretation of NMR and mass spectroscopic (MS) data. Further, anti-melanogenic effects of undecylprodigiosin (1) were investigated. First, the melanin contents of undecylprodigiosin (1)-treated B16 cells were evaluated. Furthermore, undecylprodigiosin (1) significantly inhibited the key enzymes involved in melanogenesis, including tyrosinase, tyrosinase related protein-1 (TYRP-1), and dopachrome tautomerase (DCT). The mRNA and protein expression levels of Microphthalmia-associated transcriptian factor (MiTF), a critical transcription factor for tyrosinase gene expression, were also suppressed by undecylprodigiosin (1) treatment in B16 analyses. Collectively, our results suggest for the first time that undecylprodigiosin (1), a potent component isolated from an extract of marine Streptomyces sp. SNA-077, critically exerts the anti-melanogenic ability for melanin synthesis.

키워드

과제정보

This research was funded by the National Research Foundation of Korea grant funded by the Korean Government (Ministry of Science and ICT; no. 2021R1A4A2001251 to S.-J.N.), and also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1A2C1011848).

참고문헌

  1. Bikash, B., Vilja, S., Mitchell, L., Keith, Y., Mikael, I., Mikko, M.-K. and Jarmo, N. (2021) Differential regulation of undecylprodigiosin biosynthesis in the yeast-scavenging Streptomyces strain MBK6. FEMS Microbiol. Lett. 368, fnab044.
  2. Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A. and Prinsep, M. R. (2021) Marine natural products. Nat. Prod. Rep. 38, 362-413. https://doi.org/10.1039/D0NP00089B
  3. Dharmaraj, S. (2010) Marine Streptomyces as a novel source of bioactive substances. World J. Microbiol. Biotechnol. 26, 2123-2139. https://doi.org/10.1007/s11274-010-0415-6
  4. Duran, N., Nakazato, G., Duran, M., Berti, I. R., Castro, G. R., Stanisic, D., Brocchi, M., Favaro, W. J., Ferreira-Halder, C. V., Justo, G. Z. and Tasic, L. (2021) Multi-target drug with potential applications: violacein in the spotlight. World J. Microbiol. Biotechnol. 37, 151.
  5. Fenical, W. and Jensen, P. R. (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat. Chem. Biol. 2, 666-673. https://doi.org/10.1038/nchembio841
  6. Furstner, A. (2003) Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew. Chem. Int. Ed. Engl. 42, 3582-3603. https://doi.org/10.1002/anie.200300582
  7. Hearing, V. J. and Tsukamoto, K. (1991) Enzymatic control of pigmentation in mammals. FASEB J. 5, 2902-2909. https://doi.org/10.1096/fasebj.5.14.1752358
  8. Islan, G. A., Rodenak-Kladniew, B., Noacco, N., Duran, N. and Castro, G. R. (2022) Prodigiosin: a promising biomolecule with many potential biomedical applications. Bioengineered 13, 14227-14258. https://doi.org/10.1080/21655979.2022.2084498
  9. Jeong, H. J., Lee, C. S., Choi, J., Hong, Y. D., Shin, S. S., Park, J. S., Lee, J. H., Lee, S., Yoon, K. D. and Ko, J. (2015) Flavokawains B and C, melanogenesis inhibitors, isolated from the root of Piper methysticum and synthesis of analogs. Bioorg. Med. Chem. Lett. 25, 799-802. https://doi.org/10.1016/j.bmcl.2014.12.082
  10. Kannaujiya, V. K., Kumar, D., Pathak, J. and Sinha, R. P. (2019) Phycobiliproteins and their commercial significance. In Cyanobacteria (A. K. Mishra, D. N. Tiwari and A. N. Rai, Eds.), pp. 207-216. Academic Press.
  11. Kala, P. R. and Chandrika, V. (1993) Effect of different media for isolation, growth and maintenance of actinomycetes from mangrovesediments. Ind. J. Mar. Sci. 22, 297-299.
  12. Kawasaki, T., Sakurai, F., Nagatsuka, S. Y. and Hayakawa, Y. (2009) Prodigiosin biosynthesis gene cluster in the roseophilin producer Streptomyces griseoviridis. J. Antibiot. (Tokyo) 62, 271-276. https://doi.org/10.1038/ja.2009.27
  13. Kim, D., Lee, J. S., Park, Y. K., Kim, J. F., Jeong, H., Oh, T. K., Kim, B. S. and Lee, C. H. (2007) Biosynthesis of antibiotic prodiginines in the marine bacterium Hahellachejuensis KCTC 2396. J. Appl. Microbiol. 102, 937-944.
  14. Kim, D., Park, N. H., Hwang, J. A., Kim, J., Na, Y. J., Hwang, J. S., Lee, C. S. and Yang, D. C. (2019) Camellia sinensis leaf extracts lacking catechins exert depigmentary effects through ERK-dependent, MiTF-mediated tyrosinase downregulation in melan-a cells and a human skin equivalent. Arch. Biol. Sci. 71, 483-488. https://doi.org/10.2298/ABS190510031K
  15. Kim, K., Jeong, H. I., Yang, I., Nam, S. J. and Lim, K. M. (2021) Acremonidin E produced by Penicillium sp. SNF123, a fungal endophyte of Panax ginseng, has antimelanogenic activities. J. Ginseng Res. 45, 98-107. https://doi.org/10.1016/j.jgr.2019.11.007
  16. Kim, K., Leutou, A. S., Jeong, H., Kim, D., Seong, C. N., Nam, S. J. and Lim, K. M. (2017) Anti-pigmentary effect of (-)-4-hydroxysattabacin from the marine-derived bacterium Bacillus sp. Mar. Drugs 15, 138-150. https://doi.org/10.3390/md15050138
  17. Kim, S., Hillman P. F., Lee, J. Y., Lee, J., Lee, J., Cha, S. S., Oh, D. C., Nam, S. J. and Fenical, W. (2022) Actinopolymorphols E and F, pyrazine alkaloids from a marine sediment-derived bacterium Streptomyces sp. J. Antibiot. 75, 619-625. https://doi.org/10.1038/s41429-022-00562-2
  18. Koyande, A. K., Show, P. L., Guo, R. X., Tang, B. C., Ogino, C. and Chang, J. S. (2019) Bio-processing of algal bio-refinery: a review on current advances and future perspectives. Bioengineered 11, 574-592. https://doi.org/10.1080/21655979.2019.1679697
  19. Lam, K. S. (2006) Discovery of novel metabolites from marine actinomycetes. Curr. Opin. Microbiol. 9, 245-251. https://doi.org/10.1016/j.mib.2006.03.004
  20. Lee, C. S., Nam, G., Bae, I. H. and Park, J. (2019) Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes-keratinocytes and three-dimensional human skin equivalent. J. Ginseng Res. 43, 300-304. https://doi.org/10.1016/j.jgr.2017.12.005
  21. Lee, J. S., Kim, Y. S., Park, S., Kim, J., Kang, S. J., Lee, M. H., Ryu, S., Choi, J. M., Oh, T. K. and Yoon, J. H. (2011) Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikellarubidus S1-1. Appl. Environ. Microbiol. 77, 4967-4973. https://doi.org/10.1128/AEM.01986-10
  22. Lee, S. E., Kim, M. J., Hillman, P. F., Oh, D. C., Fenical, W., Nam, S. J. and Lim, K. M. (2022) Deoxyvasicinone with anti-melanogenic activity from marine-derived Streptomyces sp. CNQ-617. Mar. Drugs 20, 155-171. https://doi.org/10.3390/md20020155
  23. Lim, S. J., Jung, D. W., Hillman, P. F., Nam, S. J. and Lee, C. S. (2022) SNA077, an extract of marine Streptomyces sp., inhibits melanogenesis by downregulating melanogenic proteins via inactivation of cAMP/PKA/CREB signaling. Int. J. Mol. Sci. 23, 14922.
  24. Lim, S. J., Min, D. J., Kim, S., Lee, J., Lee, E. S., Kim, H., Cho, S. Y., Beak, H. S., Lee, C. S., Nam, S. J. and Ko, J. (2021) Pseudoalteromone A, a ubiquinone derivative from marine Pseudoalteromonas spp., suppresses melanogenesis. Mar. Drugs 19, 612.
  25. Malpartida, F., Niemi, J., Navarrete, R. and Hopwood, D. A. (1990) Cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the Streptomyces coelicolor antibiotic undecylprodigiosin. Gene 93, 91-99. https://doi.org/10.1016/0378-1119(90)90141-D
  26. Mincer, T. J., Jensen, P. R., Kauffman, C. A. and Fenical, W. (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl. Environ. Microbiol. 68, 5005-5011. https://doi.org/10.1128/AEM.68.10.5005-5011.2002
  27. Numan, M., Bashir, S., Mumtaz, R., Tayyab, S., Rehman, N. U., Khan, A. L., Shinwari, Z. K. and Al-Harrasi, A. (2018) Therapeutic applications of bacterial pigments: a review of current status and future opportunities. 3 Biotech 8, 207.
  28. Prieto-Davo, A., Fenical, W. and Jensen, P. R. (2008) Comparative actinomycete diversity in marine sediments. Aquat. Microb. Ecol. 52, 1-11. https://doi.org/10.3354/ame01211
  29. Ranjani, A., Dhanasekaran, D. and Gopinath Ponnusamy, M. (2016) An introduction to actinobacteria. In Actinobacteria (D. Dharumadurai and J. Yi, Eds.), Ch. 1. IntechOpen.
  30. Ryu, M. J., Hillman, P. F., Lee, J., Hwang, S., Lee, E. Y., Cha, S. S., Yang, I., Oh, D. C., Nam, S. J. and Fenical, W. (2021) Antibacterial meroterpenoids, merochlorins G-J from the marine bacterium Streptomyces sp. Mar. Drugs 19, 618.
  31. Stankovic, N., Senerovic, L., Ilic-Tomic, T., Vasiljevic, B. and Nikodinovic-Runic, J. (2014) Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Appl. Microbiol. Biotechnol. 98, 3841-3858. https://doi.org/10.1007/s00253-014-5590-1
  32. Swalwell, H., Latimer, J., Haywood, R. M. and Birch-Machin, M. A. (2012) Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells. Free Radic. Biol. Med. 52, 626-634. https://doi.org/10.1016/j.freeradbiomed.2011.11.019
  33. Tsao, S. W., Rudd, B. A., He, X. G., Chang, C. J. and Floss, H. G. (1985) Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives. J. Antibiot. (Tokyo) 38, 128-131. https://doi.org/10.7164/antibiotics.38.128
  34. Udwary, D. W., Zeigler, L., Asolkar, R. N., Singan, V., Lapidus, A., Fenical, W., Jensen, P. R. and Moore, B. S. (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora Tropica. Proc. Natl. Acad. Sci. U. S. A. 104, 10376-10381. https://doi.org/10.1073/pnas.0700962104
  35. Wasserman, H. H., Mc, K. J. and Santer, U. V. (1960) Studies related to the biosynthesis of prodigiosin in Serratia marcescens. Biochem. Biophys. Res. Commun. 3, 146-149. https://doi.org/10.1016/0006-291X(60)90211-4
  36. Yip, C. H., Mahalingam, S., Wan, K. L. and Nathan, S. (2021) Prodigiosin inhibits bacterial growth and virulence factors as a potential physiological response to interspecies competition. PLoS One 16, e0253445.