DOI QR코드

DOI QR Code

Study on dynamic flexural stiffness of CFST members through Bayesian model updating

  • Shang-Jun Chen (School of Transportation Science and Engineering, Beihang University) ;
  • Chuan-Chuan Hou (School of Transportation Science and Engineering, Beihang University)
  • Received : 2024.01.21
  • Accepted : 2024.05.30
  • Published : 2024.06.25

Abstract

In this paper, the dynamic flexural stiffness of concrete-filled steel tubular (CFST) members is investigated based on vibration modal testing and a Bayesian model updating procedure. To reflect the actual service states of CFST members, a 3-stage modal testing procedure is developed for 6 circular CFST beam-columns, in which the modal parameters of the specimens under varying axial load levels are extracted. In the model updating procedure, a Timoshenko beam element model is first established, in which the influence of shear deformation and rotational inertia are incorporated. Subsequently, a 2-round Bayesian model updating strategy is proposed to calculate the dynamic flexural stiffness of the specimens, which could effectively consider the influence of physical constraints in the updating process and achieve reasonably well results. Analysis of the updating results shows that with the increase of the axial load level, degradation of the flexural stiffness is significantly influenced by the load eccentricity. It shows that the cracking of the core concrete is the primary reason for the flexural stiffness degradation of CFST beam-columns. Finally, based on comparison with equations proposed by several design standards, the calculation methods for the dynamic flexural stiffness of CFST members is recommended.

Keywords

Acknowledgement

The research reported in the paper is supported by the National Natural Science Foundation of China (Projects No. 52378117, 52111530130 and 51908017). The financial support is greatly appreciated.

References

  1. ACI 318-19 and ACI 318R-19 (2019), Building Code Requirements for Structural Concrete and Commentary, ACI Committee 318; USA.
  2. Al Zand, A.W., Badaruzzaman, W.H.W. and Tawfeeq, W.M. (2020), "New empirical methods for predicting flexural capacity and stiffness of CFST beam", J. Constr. Steel Res., 164, 105778. https://doi.org/10.1016/j.jcsr.2019.105778.
  3. Altunisik, A.C., Okur, F.Y. and Kahya, V. (2017), "Automated model updating of multiple cracked cantilever beams for damage detection", J. Constr. Steel Res., 138, 499-512. https://doi.org/10.1016/j.jcsr.2017.08.006.
  4. ANSI/AISC 360-22 (2022), Specification for Structural Steel Buildings, American Institute of Steel Construction, USA.
  5. AS/NZS 2327 (2017), Joint Technical Committee BD-032 (2017), Standards Australia Limited and Standards New Zealand, Australia.
  6. Aslani, F., Lloyd, R., Uy, B., Kang, W.H. and Hicks, S. (2016), "Statistical calibration of safety factors for flexural stiffness of composite columns", Steel Comp. Struct., 20(1), 127-145. https://doi.org/10.12989/scs.2016.20.1.127.
  7. Beck, J.L. and Katafygiotis, L.S. (1998), "Updating models and their uncertainties. I: Bayesian statistical framework", J. Eng. Mech., 124(4), 455-461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455).
  8. Beck, J.L. and Au, S.K. (2002), "Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation", J. Eng. Mech., 128(4), 380-391. https://doi.org/10.1061/(ASCE)07339399(2002)128:4(380).
  9. Braak, C.J.T. (2006), "A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces", Stat. Comput., 16, 239-249. https://doi.org/10.1002/abio.370040210.
  10. Cowper, G. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340 https://doi.org/10.1115/1.3625046.
  11. Deng, R., Zhou, X.H., Ji, W.D., Li, R.F., Zheng, S.Q. and Wang, Y.H. (2023), "Coupled behaviour and strength prediction of tapered CFDST columns with large hollow ratios for wind turbine towers", Eng. Struct., 289, 116287. https://doi.org/10.1016/j.engstruct.2023.116287.
  12. Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel Res., 58(12), 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6.
  13. Eltaief, M., Chateauneuf, A., Bouraoui, C. and Hassine, T. (2015), "Dynamic approach for optimal inspection planning of fatigue cracked components", J. Constr. Steel Res., 115, 263-275. https://doi.org/10.1016/j.jcsr.2015.08.027.
  14. Eurocode 4: (2004), Design of composite steel and concrete structures - Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization; Belgium.
  15. Ewins, D.J. (1984), Modal Testing: Theory and Practice, Research studies press, Letchworth, UK.
  16. GB/T 51446-2021 (2021), National Standard of The People's Republic of China, China Architecture & Building Press; China.
  17. GB 50923-2013 (2013), National Standard of The People's Republic of China, China Planning Press, Beijing; China.
  18. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228 https://doi.org/10.1016/j.jcsr.2014.04.016.
  19. Hou, C. and Lu, Y. (2016), "Identification of cracks in thick beams with a cracked beam element model", J. Sound Vib., 385, 104-124. https://doi.org/10.1016/j.jsv.2016.09.009.
  20. Hou, C., and Lu, Y. (2017), "Experimental study of crack identification in thick beams with a cracked beam element model", J. Eng. Mech., 143(6), 04017020. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001215.
  21. Hou, Z.Q., Cheng, Y.D., Tong, Z.F., Sun, Y.M. and Lu, N.Y. (1985), "Modal parameter identification from multi-point measured data", Proceedings of the 3rd International Modal Analysis Conference, Orlando, USA.
  22. Jaishi, B., Kim, H.J., Kim, M.K., Ren, W.X. and Lee, S.H. (2007), "Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility", Mech. Syst. Signal Pr., 21(6), 2406-2426. https://doi.org/10.1016/j.ymssp.2007.01.003.
  23. Jerath, S. and Shibani, M.M. (1985), "Dynamic stiffness and vibration of reinforced concrete beams", ACI Journal Proceedings, USA, March.
  24. Katafygiotis, L.S. and Beck, J.L. (1998), "Updating models and their uncertainties. II: Model identifiability", J. Eng. Mech., 124(4), 463-467. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(463).
  25. Kuok, S.C. and Yuen, K.V. (2012), "Structural health monitoring of Canton Tower using Bayesian framework", Smart Struct. Syst., 10(4-5), 375-391. https://doi.org/10.12989/sss.2012.10.4_5.375.
  26. Li, Y., Cai, C.S., Liu, Y., Chen, Y. and Liu, J. (2016), "Dynamic analysis of a large span specially shaped hybrid girder bridge with concrete-filled steel tube arches", Eng. Struct., 106, 243-260. https://doi.org/10.1016/j.engstruct.2015.10.026.
  27. Lu, Z.H., Zhao, Y.G., Yu, Z.W. and Chen, C. (2015), "Reliability-based assessment of American and European specifications for square CFT stub columns", Steel Compos. Struct., 19, 811-827. https://doi.org/10.12989/scs.2015.19.4.811.
  28. Musial, M. and Grosel, J. (2016), "Determining the Young's modulus of concrete by measuring the eigenfrequencies of concrete and reinforced concrete beams", Constr. Build Mater., 121, 44-52. https://doi.org/10.1016/j.conbuildmat.2016.05.150.
  29. Ndambi, J.M., Vantomme, J. and Harri, K. (2002), "Damage assessment in reinforced concrete beams using eigenfrequencies and mode shape derivatives", Eng. Struct., 24(4), 501-515. https://doi.org/10.1016/S0141-0296(01)00117-1.
  30. Ni, Y.Q., Xia, Y., Lin, W., Chen, W.H. and Ko, J.M. (2012), "SHM benchmark for high-rise structures: a reduced-order finite element model and field measurement data", Smart Struct. Syst., 10(4-5), 411-426. https://doi.org/10.12989/sss.2012.10.4_5.411.
  31. Richardson, M.H. and Formenti, D.L. (1982), "Parameter estimation from frequency response measurements using rational fraction polynomials", Proceedings of the 1st International Modal Analysis Conference, Union College Schenectady, NY, November.
  32. Roeder, C.W., Lehman, D.E. and Bishop, E. (2010), "Strength and stiffness of circular concrete-filled tubes", J. Struct. Eng., 136(12), 1545-1553. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000263.
  33. Storn, R. and Price, K. (1997), "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces", J. Global Optim., 11, 341-359. https://doi.org/10.1002/abio.370040210.
  34. Thai, H.T., Thai, S., Ngo, T., Uy, B., Kang, W.H. and Hicks, S.J. (2021), "Reliability considerations of modern design codes for CFST columns", J. Constr. Steel Res., 177, 106482. https://doi.org/10.1016/j.jcsr.2020.106482.
  35. Tort, C. and Hajjar, J.F. (2010), "Mixed finite element for three-dimensional nonlinear dynamic analysis of rectangular concrete-filled steel tube beam-columns", J. Eng. Mech., 136(11), 1329-1339. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000179.
  36. Tort, C. and Hajjar, J.F. (2010), "Mixed finite-element modeling of rectangular concrete-filled steel tube members and frames under static and dynamic loads", J. Struct. Eng., 136(6), 654-664. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000158.
  37. Wang, R., Han, L.H., Nie, J.G. and Zhao, X.L. (2014), "Flexural performance of rectangular CFST members", Thin Wall. Struct., 79, 154-165. https://doi.org/10.1016/j.tws.2014.02.015.
  38. Wu, G., Ren, W.X., Zhu, Y.F. and Hussain, S.M. (2021), "Static and dynamic evaluation of a butterfly-shaped concrete-filled steel tube arch bridge through numerical analysis and field tests", Adv. Mech. Eng., 13(9), 1-13. https://doi.org/10.1177/16878140211044671.
  39. Xu, T. and Castel, A. (2016), "Modeling the dynamic stiffness of cracked reinforced concrete beams under low-amplitude vibration loads", J. Sound Vib., 368, 135-147. https://doi.org/10.1016/j.jsv.2016.01.007.
  40. Yokoyama, T. (1996), "Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations", Comput. Struct., 61(6), 995-1007. https://doi.org/10.1016/0045-7949(96)00107-1.
  41. Yoshimura, M., Wu, Q., Takahashi, K., Nakamura, S. and Furukawa, K. (2006), "Vibration analysis of the Second Saikai Bridge-a concrete filled tubular (CFT) arch bridge" J. Sound Vib., 290(1-2), 388-409. https://doi.org/10.1016/j.jsv.2005.04.004.
  42. Zhang, D.Y., Li, X., Yan, W.M., Xie, W.C. and Pandey, M.D. (2013), "Stochastic seismic analysis of a concrete-filled steel tubular (CFST) arch bridge under tridirectional multiple excitations", Eng. Struct., 52, 355-371. https://doi.org/10.1016/j.engstruct.2013.01.031.
  43. Zhang, L., Zhou, J., Chui, Y.H. and Li, G. (2022), "Vibration Performance and Stiffness Properties of Mass Timber Panel- Concrete Composite Floors with Notched Connections", J. Struct. Eng., 148(9), 04022136. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003450.
  44. Zong, Z.H., Jaishi, B., Ge, J.P. and Ren, W.X. (2005), "Dynamic analysis of a half-through concrete-filled steel tubular arch bridge", Eng. Struct., 27(1), 3-15. https://doi.org/10.1016/j.engstruct.2004.08.007.