DOI QR코드

DOI QR Code

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan (Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology) ;
  • Haneen M. Sawalha (Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology)
  • Received : 2024.01.23
  • Accepted : 2024.06.10
  • Published : 2024.06.25

Abstract

The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.

Keywords

Acknowledgement

The authors acknowledge the technical support provided by the Jordan University of Science and Technology (JUST).

References

  1. Abadel, A.A. (2023), "Structural performance of strengthening of high-performance geopolymer concrete columns utilizing different confinement materials: Experimental and numerical study", Buildings 13(7), 1709. https://doi.org/10.3390/buildings13071709. 
  2. ABAQUS, D.S. (2017), "Abaqus/Standard Users Manual", Dassault Systemes. 
  3. Abdalla, K.M., Al-Rousan, R., Alhassan, M.A. and Lagaros, N.D. (2020), "Finite-element modelling of concrete-filled steel tube columns wrapped with CFRP", Proceedings of the Institution of Civil Engineers - Structures and Buildings. 173(11), 844-857. https://doi.org/10.1680/jstbu.19.00011 
  4. ACI318-19 (2019), "Building Code Requirements for Structural Concrete", American Concrete Institute, Farmington Hills, MI, USA. 
  5. ACI (American Concrete Institute) (2019), "318-19 & ACI 318R19: Building Code Requirements for Structural Concrete and Commentary", American Concrete Institute: Farmington Hills, MI, USA. 
  6. Ahmad, S., Kumar, A. and Kumar, K. (2020). "Axial performance of GGBFS concrete filled steel tubes", Structures.
  7. AISC-360-16 (2016), "Specification for Structural Steel Buildings", American Institute of Steel Construction, Chicago, USA. 
  8. Al-Rousan, R. (2021), "Behavior of CFT steel columns damaged by thermal shock", Magazine of Civil Engineering. 108(108)), 10808. https://doi.org/10.34910/MCE.108.8 
  9. Al-Rousan, R., Nusier, O., Abdalla, K., Alhassan, M. and Lagaros, N.D. (2022), "NLFEA of sulfate-damaged circular CFT steel columns confined with CFRP composites and subjected to axial and cyclic lateral loads", Buildings. 12(3), 296. https://doi.org/10.3390/buildings12030296. 
  10. Al-Rousan, R.Z. (2022), "Cyclic lateral behavior of NLFEA heat-damaged circular CFT steel columns confined at the end with CFRP composites", Case Studies Construct. Mater., 17 e01223. https://doi.org/10.1016/j.cscm.2022.e01223. 
  11. Al-Rousan, R.Z., Abdalla, K.M. and Alnemrawi, B.R. (2024). "The Behavior of Heat-Damaged RC Beams Reinforced Internally with CFRP Strips", 4th International Conference "Coordinating Engineering for Sustainability and Resilience" & Midterm Conference of CircularB "Implementation of Circular Economy in the Built Environment", Cham, 2024//. 
  12. Al-Rousan, R.Z. and Alnemrawi, B.R. (2023), "Behaviour of thermally shocked RC columns internally confined by auxetic steel wire mesh", Proceedings of the Institution of Civil Engineers-Structures and Buildings. 1(1), 1-14. https://doi.org/10.1680/jstbu.22.00226 
  13. Al-Rousan, R.Z. and Alnemrawi, B.R. (2023), "Cyclic behavior of CFRP confined circular CFST damaged by alkali-silica reaction", Int. J. Civil Eng., 21(7), 1159-1180. https://doi.org/10.1007/s40999-023-00820-w. 
  14. Al-Rousan, R.Z. and Alnemrawi, B.R. (2024), "Influence of overlay strength degradation on bond stresses of bridge deck system", Heliyon. 10(10). https://doi.org/10.1016/j.heliyon.2024.e31037. 
  15. Al-Rousan, R.Z. and Barfed, M.H. (2019), "Impact of curvature type on the behavior of slender reinforced concrete rectangular column confined with CFRP composite", Compos. Part B: Eng., 173, 106939. https://doi.org/10.1016/j.compositesb.2019.106939. 
  16. Alhassan, M.A., Al-Rousan, R.Z. and Taha, H.M. (2020), "Precise finite element modelling of the bond-slip contact behavior between CFRP composites and concrete", Construct. Build. Mater., 240 117943. https://doi.org/10.1016/j.conbuildmat.2019.117943. 
  17. Arokiaprakash, A. and Senthil, S. (2023), "Comprehensive study of compressive behavior of CFST columns with confinements and stiffeners", J. Construct. Steel Res., 211, 108127. https://doi.org/10.1016/j.jcsr.2023.108127. 
  18. Beck, J. and Kiyomiya, O. (2003), "Fundemental pure torsional properties of concrete filled circular steel tubes", Doboku Gakkai Ronbunshu. 2003(739), 285-296. https://doi.org/10.2208/jscej.2003.739_285. 
  19. Behera, M., Bhattacharyya, S., Minocha, A., Deoliya, R. and Maiti, S. (2014), "Recycled aggregate from C&D waste & its use in concrete-A breakthrough towards sustainability in construction sector: A review", Construct. Build. Mater., 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003. 
  20. Chen, J., Wang, Y., Roeder, C.W. and Ma, J. (2017), "Behavior of normal-strength recycled aggregate concrete filled steel tubes under combined loading", Eng. Struct., 130, 23-40. https://doi.org/10.1016/j.engstruct.2016.09.046. 
  21. Dai, X. and Lam, D. (2010), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Construct. Steel Res., 66(7), 931-942. https://doi.org/10.1016/j.jcsr.2010.02.003. 
  22. Dai, X., Lam, D., Jamaluddin, N. and Ye, J. (2014), "Numerical analysis of slender elliptical concrete filled columns under axial compression", Thin-Wall. Struct., 77, 26-35. https://doi.org/10.1016/j.tws.2013.11.015. 
  23. Domingo-Cabo, A., Lazaro, C., Lopez-Gayarre, F., Serrano-Lopez, M., Serna, P. and Castano-Tabares, J. (2009), "Creep and shrinkage of recycled aggregate concrete", Construct. Build. Mater., 23(7), 2545-2553. https://doi.org/10.1016/j.conbuildmat.2009.02.018. 
  24. EN1994 (2004), "Eurocode 4: Design of composite steel and concrete structures", Part 1-1: General rules and rules for buildings. Brussels, Belgium: Comit'e Europ'een de Normalisation. 
  25. Ernst, W., Lynn, P., Nathan, M., Chris, H. and Meida, L.O. (2001), "Carbon dioxide emissions from the global cement industry", 26(1), 303-329. 10.1146/annurev.energy.26.1.303. 
  26. Farahi, M., Heidarpour, A., Zhao, X.-L. and Al-Mahaidi, R. (2016), "Compressive behaviour of concrete-filled double-skin sections consisting of corrugated plates", Eng. Struct., 111, 467-477. https://doi.org/10.1016/j.engstruct.2015.12.012. 
  27. Guler, S., Copur, A. and Aydogan, M. (2014), "A comparative study on square and circular high strength concrete-filled steel tube columns", Adv. Steel Construct., 10(2), 234-247.  https://doi.org/10.18057/IJASC.2014.10.2.7
  28. Guo, L., Zhang, S., Kim, W.-J. and Ranzi, G. (2007), "Behavior of square hollow steel tubes and steel tubes filled with concrete", Thin-Wall. Struct., 45(12), 961-973. https://doi.org/10.1016/j.tws.2007.07.009. 
  29. Han, L.-H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Construct. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016. 
  30. Han, L.-H., Xu, C.-Y. and Hou, C. (2022), "Axial compression and bond behaviour of recycled aggregate concrete-filled stainless steel tubular stub columns", Eng. Struct., 262, 114306. https://doi.org/10.1016/j.engstruct.2022.114306. 
  31. Han, L.-H., Yao, G.-H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin-Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008. 
  32. Hossain, K.M. and Chu, K. (2019), "Confinement of six different concretes in CFST columns having different shapes and slenderness", Int. J. Adv. Struct. Eng., 11(2), 255-270. http://doi.org/10.1007/s40091-019-0228-2. 
  33. Ibanez, C., Hernandez-Figueirido, D. and Piquer, A. (2018), "Shape effect on axially loaded high strength CFST stub columns", J. Construct. Steel Res., 147, 247-256. https://doi.org/10.1016/j.jcsr.2018.04.005. 
  34. Ibanez, C., Hernandez-Figueirido, D. and Piquer, A. (2021), "Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment", Eng. Struct., 230, 111687. https://doi.org/10.1016/j.engstruct.2020.111687. 
  35. Katwal, U., Aziz, T., Tao, Z., Uy, B. and Rahme, D. (2022), "Tests of circular geopolymer concrete-filled steel columns under ambient and fire conditions", J. Construct. Steel Res., 196, 107393. https://doi.org/10.1016/j.jcsr.2022.107393. 
  36. Lam, D., Dai, X., Han, L., Ren, Q. and Li, W. (2012), "Behaviour of inclined, tapered and STS square CFST stub columns subjected to axial load", Thin-Wall. Struct., 54, 94-105. https://doi.org/10.1016/j.tws.2012.02.010. 
  37. Li, M., Zong, Z., Du, M., Pan, Y. and Zhang, X. (2021), "Experimental investigation on the residual axial capacity of close-in blast damaged CFDST columns", Thin-Wall. Struct., 165, 107976. https://doi.org/10.1016/j.tws.2021.107976. 
  38. Li, P., Jiang, J., Li, Q. and Ren, Z. (2023), "Axial compression performance and optimum design of round-cornered square CFST with high-strength materials", J. Build. Eng., 68, 106145. https://doi.org/10.1016/j.jobe.2023.106145. 
  39. Li, W., Luo, Z., Tao, Z., Duan, W.H. and Shah, S.P. (2017), "Mechanical behavior of recycled aggregate concrete-filled steel tube stub columns after exposure to elevated temperatures", Construct. Build. Mater., 146, 571-581. https://doi.org/10.1016/j.conbuildmat.2017.04.118. 
  40. Liao, F.-Y., Han, L.-H., Tao, Z. and Rasmussen, K. (2017), "Experimental behavior of concrete-filled stainless steel tubular columns under cyclic lateral loading", J. Struct. Eng., 143(4). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001705. 
  41. Liew, J.R. and Xiong, D. (2012), "Ultra-high strength concrete filled composite columns for multi-storey building construction", Adv. Struct. Eng., 15(9), 1487-1503. https://doi.org/10.1260/1369-4332.15.9.1487. 
  42. Liu, D., Gho, W.-M. and Yuan, J. (2003), "Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns", J. Construct. Steel Res., 59(12), 1499-1515. https://doi.org/10.1016/S0143-974X(03)00106-8. 
  43. Liu, R., Wu, J., Yan, G., Ye, J. and Wang, D. (2023), "Axial compressive behavior of geopolymer recycled brick aggregate concrete-filled steel tubular slender columns", Construct. Build. Mater., 364, 130013. https://doi.org/10.1016/j.conbuildmat.2022.130013. 
  44. Liu, X., Xu, C., Liu, J. and Yang, Y. (2018), "Research on special-shaped concrete-filled steel tubular columns under axial compression", J. Construct. Steel Res., 147, 203-223. https://doi.org/10.1016/j.jcsr.2018.04.014. 
  45. Lyu, W.-Q., Han, L.-H. and Hou, C. (2021), "Axial compressive behaviour and design calculations on recycled aggregate concrete-filled steel tubular (RAC-FST) stub columns", Eng. Struct., 241, 112452. https://doi.org/10.1016/j.engstruct.2021.112452. 
  46. Nagan, S. and Karthiyaini, S. (2014), "A study on load carrying capacity of fly ash based polymer concrete columns strengthened using double layer GFRP wrapping", Adv. Mater. Sci. Eng., 2014(2), 1-6. https://doi.org/10.1155/2014/312139 
  47. Nedunuri, S.S.S.A., Sertse, S.G. and Muhammad, S. (2020), "Microstructural study of Portland cement partially replaced with fly ash, ground granulated blast furnace slag and silica fume as determined by pozzolanic activity", Construct. Build. Mater., 238, 117561. https://doi.org/10.1016/j.conbuildmat.2019.117561. 
  48. O'Shea, M.D. and Bridge, R.Q. (1997), "Local buckling of thin-walled circular steel sections with or without internal restraint", J. Construct. Steel Res.. 41(2-3), 137-157. https://doi.org/10.1016/S0143-974X(97)80891-7. 
  49. Ozbakkaloglu, T., Gholampour, A. and Xie, T. (2018), "Mechanical and durability properties of recycled aggregate concrete: Effect of recycled aggregate properties and content", J. Mater. Civil Eng., 30(2), 04017275. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0002142. 
  50. Pan, Z., Sanjayan, J.G. and Rangan, B.V. (2011), "Fracture properties of geopolymer paste and concrete", Mag. Concrete Res. 63(10), 763-771. https://doi.org/10.1680/macr.2011.63.10.763. 
  51. Patel, V., Hassanein, M., Thai, H.-T., Al Abadi, H., Elchalakani, M. and Bai, Y. (2019), "Ultra-high strength circular short CFST columns: Axisymmetric analysis, behaviour and design", Eng. Struct., 179, 268-283. https://doi.org/10.1016/j.engstruct.2018.10.081. 
  52. Patton, M.L., Warsi, S.B.F. and Adak, D. (2023), "Experimental and numerical study on the structural behaviour of HST, RCC and CFST stub columns under pure axial compression", Innov. Infrastruct. Solutions. 8(2), 74. https://doi.org/10.1007/s41062-022-01025-1. 
  53. Rahal, K. and Alrefaei, Y. (2018), "Shear strength of recycled aggregate concrete beams containing stirrups", Construct. Build. Mater., 191, 866-876. https://doi.org/10.1016/j.conbuildmat.2018.10.023 
  54. Shbeeb, N.I., Al-Rousan, R., Issa, M.A. and Al-Salman, H. (2018), "Impact of bonded carbon fibre composite on the shear strength of reinforced concrete beams", Proceedings of the Institution of Civil Engineers-Structures and Buildings. 171(5), 364-379. https://doi.org/10.1680/jstbu.16.00145. 
  55. Shen, Q., Wang, J., Wang, J. and Ding, Z. (2019), "Axial compressive performance of circular CFST columns partially wrapped by carbon FRP", J. Construct. Steel Res., 155, 90-106. https://doi.org/10.1016/j.jcsr.2018.12.017. 
  56. Shi, X.-S., Wang, Q.-Y., Zhao, X.-L. and Collins, F.G. (2015), "Structural behaviour of geopolymeric recycled concrete filled steel tubular columns under axial loading", Construct. Build. Mater., 81, 187-197. https://doi.org/10.1016/j.conbuildmat.2015.02.035. 
  57. Sujatha, T., Kannapiran, K. and Nagan, S. (2012), "Strength assessment of heat cured geopolymer concrete slender column", Asian J. Civil Eng., 13(5), 635-646. 
  58. Susantha, K., Ge, H. and Usami, T. (2001), "Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes", Eng. Struct., 23(10), 1331-1347. https://doi.org/10.1016/S0141-0296(01)00020-7. 
  59. Tao, Z., Wang, Z.-B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Construct. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001. 
  60. Wang, Y., Zhang, H., Geng, Y., Wang, Q. and Zhang, S. (2019), "Prediction of the elastic modulus and the splitting tensile strength of concrete incorporating both fine and coarse recycled aggregate", Construct. Build. Mater., 215, 332-346. https://doi.org/10.1016/j.conbuildmat.2019.04.212 
  61. Yang, D., Liu, F. and Wang, Y. (2023), "Axial compression behaviour of rectangular recycled aggregate concrete-filled steel tubular stub columns", J. Construct. Steel Res., 201, 107687. https://doi.org/10.1016/j.jcsr.2022.107687. 
  62. Yang, Z.-C., Han, L.-H. and Hou, C. (2022), "Performance of recycled aggregate concrete-filled steel tubular columns under combined compression and shear load", Eng. Struct., 253, 113771. https://doi.org/10.1016/j.engstruct.2021.113771. 
  63. Yang, Z.-C., Han, L.-H. and Li, W. (2023), "Seismic performance of concrete-encased hexagonal CFST column base: Experimental and numerical analysis", J. Construct. Steel Res., 211, 108129. https://doi.org/10.1016/j.jcsr.2023.108129. 
  64. Yu, Q., Tao, Z. and Wu, Y.-X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370. https://doi.org/10.1016/j.tws.2007.10.001. 
  65. Zanuy, C. (2019), "Tension chord model and flexural stiffness for circular CFST in bending", Int. J. Steel Struct., 19(1), 147-156. https://doi.org/10.1007/s13296-018-0096-9. 
  66. Zarringol, M. and Thai, H.-T. (2022), "Prediction of the load-shortening curve of CFST columns using ANN-based models", J. Build. Eng., 51, 104279. https://doi.org/10.1016/j.jobe.2022.104279. 
  67. Zheng, Y., Du, J., Zheng, L. and Wang, C. (2023), "Compressive behavior of geopolymer recycled brick aggregate concrete confined by steel tubes", J. Build. Eng., 70, 106350. https://doi.org/10.1016/j.jobe.2023.106350. 
  68. Zheng, Y., Xiao, Y., Wang, C. and Li, Y. (2023), "Behavior of square geopolymer recycled brick aggregate concrete filled steel tubular stub columns under axial compression", Construct. Build. Mater., 363, 129823. https://doi.org/10.1016/j.conbuildmat.2022.129823.