DOI QR코드

DOI QR Code

Optimal sustainable design of steel-concrete composite footbridges considering different pedestrian comfort levels

  • Fernando L. Tres Junior (Graduate Program in Civil and Environmental Engineering, University of Passo Fundo) ;
  • Guilherme F. Medeiros (Graduate Program in Civil and Environmental Engineering, University of Passo Fundo) ;
  • Moacir Kripka (Graduate Program in Civil and Environmental Engineering, University of Passo Fundo)
  • 투고 : 2023.08.10
  • 심사 : 2024.06.07
  • 발행 : 2024.06.25

초록

Given the increased interest in enhancing structural sustainability, the current study sought to apply multiobjective optimization to a footbridge with a steel-concrete composite I-girder structure. It was considered as objectives minimizing the cost for building the structure, the environmental impact assessed by CO2 emissions, and the vertical accelerations created by human-induced vibrations, with the goal of ensuring pedestrian comfort. Spans ranging from 15 to 25 meters were investigated. The resistance of the slab's concrete, the thickness of the slab, the dimensions of the welded steel I-profile, and the composite beam interaction degree were all evaluated as design variables. The optimization problem was handled using the Multiobjective Harmony Search (MOHS) metaheuristic algorithm. The optimization results were used to generate a Pareto front for each span, allowing us to assess the correlations between different objectives. By evaluating the values of design variables in relation to different levels of pedestrian comfort, it was identified optimal values that can be employed as a starting point in predimensioning of the type of structure analyzed. Based on the findings analysis, it is possible to highlight the relationship between the structure's cost and CO2 emission objectives, indicating that cost-effective solutions are also environmentally efficient. Pedestrian comfort improvement is especially feasible in smaller spans and from a medium to a maximum level of comfort, but it becomes expensive for larger spans or for increasing comfort from minimum to medium level.

키워드

과제정보

The authors are grateful for the financial support received from the Brazilian government in the form of grants (CAPES for the first author and CNPq for the third author).

참고문헌

  1. Ali, N.B.H., Rhode-Barbarigos, L., Albi, A.A. P. and Smith, I.F.C. (2010), "Design optimization and dynamic analysis of a tensegrity-based footbridge", Eng. Struct., 3 (11), 3650-3659. https://doi.org/10.1016/j.engstruct.2010.08.009.
  2. Atmaca, B. (2021), "Size and post-tensioning cable force optimization of cable-stayed footbridge", Structures, 33, 2036-2049. https://doi.org/10.1016/j.istruc.2021.05.050.
  3. Ben-Israel, N.I. and Lavan, O. (2023), "Topology and sizing optimization of truss-like pedestrian bridges with viscous dampers and inerters", J. Struct. Eng., 149(6). https://doi.org/10.1061/JSENDH.STENG-11798.
  4. CAIXA (2022), Price and Costs References; National System of Survey of Civil Construction Costs and Indexes (SINAPI), Brasilia, Brazil. https://www.caixa.gov.br/site/Paginas/downloads.aspx#categoria_660
  5. Ferenc, T. and Mikulski, T. (2020), "Parametric optimization of sandwich composite footbridge with U-shaped cross-section", Compos. Struct., 46, 112406. https://doi.org/10.1016/j.compstruct.2020.112406.
  6. Feron, J., Boucher, L., Denoel, V. and Latteur, P. (2019), "Optimization of footbridges composed of prismatic tensegrity modules", J. Bridge Eng., 4(12). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001438.
  7. Ferreira, F. and Simoes, L. (2018), "Optimum cost design of controlled cable stayed footbridges", Comput. Struct., 180, 510-223. https://doi.org/10.1016/j.engstruct.2018.11.038.
  8. Garcia-Segura, T. and Yepes, V. (2016), "Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety", Eng. Struct., 1 5, 325-336. https://doi.org/10.1016/j.engstruct.2016.07.012.
  9. Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: Harmony Search", Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201.
  10. Gervasio, H. and Da Silva, L.S. (2008), "Comparative life-cycle analysis of steel-concrete composite bridges", Struct. Infrastruct. Eng., 4(4), 251-269. https://doi.org/10.1080/15732470600627325.
  11. Jimenez-Alonso, J.F. and Saez, A. (2017), "Motion-based optimum design of a slender steel footbridge and assessment of its dynamic behavior", Int. J. Steel Struct., 17, 1459-1470. https://doi.org/10.1007/s13296-017-1215-8.
  12. Kaveh, A. and Zarandi, M.M.M (2019), "Optimal design of steel-concrete composite I-girder bridges using three meta-heuristic algorithms", Periodica Polytechnica Civil Eng., 63(2), 317-337. https://doi.org/10.3311/PPci.12769.
  13. Kilikevicius, A., Bacinskas, D., Selech, J., Matijosius, J., Kilikeviciene, K., Vainorius, D., Ulbrich, D. and Romek, D. (2020), "The influence of different loads on the footbridge dynamic parameters", Symmetry, 1 (4), 657. https://doi.org/10.3390/sym12040657.
  14. Lu, P., Shi, Q., Li, D. and Wu, Y (2022), "Optimization design on the section of curved composite box beam bridges", Struct. Concrete, 4(1), 1035-1052. https://doi.org/10.1002/suco.202100911.
  15. Martinez-Munoz D., Garcia, J., Marti J.V. and Yepes V. (2022a), "Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges", Eng. Struct., 66, 114607. https://doi.org/10.1016/j.engstruct.2022.114607.
  16. Martinez-Munoz, D., Garcia, J., Marti J.V. and Yepes V. (2022b), "Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm", Struct. Multidiscipl. Optimiz., 65, 312. https://doi.org/10.1007/s00158-022-03393-9.
  17. Martinez-Munoz, D., Garcia, J., Marti J.V. and Yepes V. (2023), "Hybrid swarm intelligence optimization methods for low-embodied energy steel-concrete composite bridges", Mathematics, 11(1), 140. https://doi.org/10.3390/math11010140.
  18. Martinez-Munoz, D., Marti J.V. and Yepes V. (2022), "Social impact assessment comparison of composite and concrete bridge alternatives", Sustainability, 14(9), 5186. https://doi.org/10.3390/su14095186.
  19. Martinez-Munoz, D., Marti, J.V. and Yepes, V. (2020), "Steel-concrete composite bridges: design, life cycle assessment, maintenance, and decision-making", Adv. Civil Eng., 0 0. https://doi.org/10.1155/2020/8823370.
  20. Martinez-Munoz, D., Marti, J.V. and Yepes, V. (2021), "Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio", Materials, 14(15), 4218. https://doi.org/10.3390/ma14154218.
  21. Medeiros, G.F. and Kripka, M. (2014), "Optimization of reinforced concrete columns according to different environmental impact assessment parameters", Eng. Struct., 59, 185-194. https://doi.org/10.1016/j.engstruct.2013.10.045.
  22. Milani, C.J., Yepes, V. and Kripka, M. (2020), "Proposal of sustainability indicators for the design of small-span bridges", Int. J. Environ. Res. Public Health, 17, 4488. http://doi.org/10.3390/ijerph17124488.
  23. Mitoulis, S., Bompa, D.V., Argyroudis, S (2023), "Sustainability and climate resilience metrics and trade-offs in transport infrastructure asset recovery", Transport. Res. Part D: Transport Environ., 1 1, 103800. https://doi.org/10.1016/j.trd.2023.103800.
  24. Molina-Perez, D., Portilla-Flores, E.A., Vega-Alvarado, E., Calva-Yanez, M.B. and Sepulveda-Cervantes, G. (2021), "A novel multi-objective harmony search algorithm with pitch adjustment by genotype", Appl. Sci., 11(19), 8931. https://doi.org/10.3390/app11198931.
  25. Musa, Y.I. and Diaz, M.A. (2007), "Design optimization of composite steel box girder in flexure", Practice Periodical Struct. Des. Construct., 1 (3), 146-152. https://doi.org/10.1061/(ASCE)1084-0680(2007)12:3(146).
  26. NBR 5884 (2013), Electric Arc Welded Steel Structural I Profile-General Requirements, Brazilian Association of Technical Standards; Rio de Janeiro, Brazil.
  27. NBR 6118 (2014), Design of Concrete Structures-Procedure, Brazilian Association of Technical Standards; Rio de Janeiro, Brazil.
  28. NBR 7187 (2021), Design of Concrete Bridges, Viaducts, and Footbridges, Brazilian Association of Technical Standards; Rio de Janeiro, Brazil.
  29. NBR 8800 (2008), Design of Steel Structures and Composite Structures of Steel and Concrete for Buildings, Brazilian Association of Technical Standards; Rio de Janeiro, Brazil.
  30. Orcesi, A., Cremona, C. and Ta, B (2018), "Optimization of design and life-cycle management for steel-concrete composite bridges", Struct. Eng. Int., 8, 185-195. https://doi.org/10.1080/10168664.2018.1453763.
  31. Pedro, R., Demarche, J., Miguel, L. and Lopez, R. (2017), "An efficient approach for the optimization of simply supported steel-concrete composite I-girder bridges", Adv. Eng. Softw., 11 , 31-45. https://doi.org/10.1016/j.advengsoft.2017.06.009.
  32. Poliakov, V.Y. and Saurin, V.V. (2020), "Optimization of a composite beam for high-speed railroads", Steel Compos. Struct., 37(4), 493-501. https://doi.org/10.12989/scs.2020.37.4.493.
  33. Santoro, J.F. and Kripka, M. (2020), "Minimizing environmental impact from optimized sizing of reinforced concrete elements", Comput. Concrete, 5(2), 111-118. https://doi.org/10.12989/cac.2020.25.2.111.
  34. Sivasubramani, S. and Swarup, S. (2011), "Multi-objective harmony search algorithm for optimal power flow problem", Int. J. Electr. Power Energy Syst, 33(3), 745-752. https://doi.org/10.1016/j.ijepes.2010.12.031.
  35. Tormen, A.F., Pravia, Z.M.C., Busato, F.R. and Kripka, M. (2020), "Optimization of steel-concrete composite beams considering cost and environmental impact", Steel Compos. Struct., 34(3), 409-421. https://doi.org/ 10.12989/scs.2020.34.3.409.
  36. Tres Junior, F.L., Yepes, V., Medeiros, G.F. and Kripka, M. (2023), "Multi-objective optimization applied to the design of sustainable pedestrian bridges", Int. J. Environ. Res. Public Health, 0(4), 3190. https://doi.org/10.3390/ijerph20043190.
  37. Tubino, F. and Piccardo, G. (2015), "Tuned mass damper optimization for the mitigation of human-induced vibrations of pedestrian bridges", Meccanica, 50, 809-824. https://doi.org/10.1007/s11012-014-0021-z.
  38. UN (2015), Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations, New York, United States of America. https://sdgs.un.org/2030agenda
  39. UNEP (2022), 2022 Global Status Report for Buildings and Construction; United Nations Environment Programme, Nairobi, Kenya. https://www.unep.org/resources/publication/2022-global-statusreport-buildings-and-construction
  40. Van Nimmen, K., Verbeke, P., Lombaert, G., De Roeck, G. and Broeck, P.V.D. (2016), "Numerical and experimental evaluation of the dynamic performance of a footbridge with tuned mass dampers", J. Bridge Eng., 1(8). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000815.
  41. Wang, Z., Zhou, L. and Chen, G. (2023), "Optimal design and application of a MTMD system for a glulam footbridge under human-induced excitation", Europ. J. Wood Wood Products, 81, 529-545. https://doi.org/10.1007/s00107-022-01885-5.
  42. Worldsteel (2022), Our Performance: Sustainability Indicators; Worldsteel Association, Brussels, Belgium. https://worldsteel.org/steel-topics/sustainability/sustainabilityindicators/
  43. Yepes, V., Dasi-Gil, M., Martinez-Munoz, D., Lopez-Desfilis, V.J. and Marti, J.V. (2019), "Heuristic techniques for the design of steel-concrete composite pedestrian bridges", Appl. Sci., 9(16), 3253. https://doi.org/10.3390/app9163253.