DOI QR코드

DOI QR Code

Study of educational management on performance of scholar in nano/micro-level composite

  • Chunhong Zhang (School of Teacher Education, Harbin University) ;
  • Yun Liu (Faculty of Meizhou Normal Branch, Jiaying University) ;
  • Yong Zhang (Faculty of Meizhou Normal Branch, Jiaying University) ;
  • Artin Ketabdar (Oxford International Study Center) ;
  • H.B. Xiang (Department of design, Tabris Industrial Company)
  • 투고 : 2023.03.21
  • 심사 : 2024.06.19
  • 발행 : 2024.06.25

초록

This study investigates the impact of educational management on the performance of scholars in the field of nano/micro-level composites. The objective is to understand how effective management strategies can enhance the academic achievements and research outcomes of students specializing in this advanced area of materials science. Through a combination of qualitative and quantitative methodologies, data was collected from various educational institutions renowned for their programs in nano/micro-level composites. Our results indicate that tailored educational management practices significantly improve student performance. Key strategies identified include personalized mentorship programs, interdisciplinary collaboration opportunities, and access to state-of-the-art laboratory facilities. Institutions that implemented these practices observed a marked increase in the quality and quantity of research outputs, higher student satisfaction rates, and improved post-graduation employment prospects in relevant industries. Furthermore, the study highlights the importance of continuous professional development for educators to stay abreast of the latest advancements in nano/micro-level composites. By fostering an environment of innovation and support, educational management can play a crucial role in shaping the next generation of researchers and professionals in this cutting-edge field. These findings underscore the necessity of strategic educational management in optimizing the academic and professional trajectories of scholars in nano/micro-level composites, ultimately contributing to advancements in technology and industry applications.

키워드

과제정보

Heilongjiang Higher Education Teaching Reform Project "Research on the Practical Mechanism of Integrating Excellent Chinese Traditional Culture into Law Courses in Universities" (No. SJGY20210513) Key topic of education science planning in Heilongjiang Province "Innovative research and practice of teaching model of teacher education curriculum in the context of teacher professional certification" (No. GJB1423387) (Chunhong Zhang) This article was supported by the fund of Jiaying University2024 Basic Education Research Project: Reform and Practical Research on Integrating the New Productivity Connotation of Science Education in Primary and Secondary Schools in Eastern Guangdong No. JCJY20242006 (Yun Liu) 2023 Jiaying University Scientific Research Key Project: Research on the Current Situation, Hotspots and Frontier Evolution of Basic Education Themes in the Guangdong-Hong Kong-Macao Greater Bay Area from the Perspective of Global Development (2000-2022), Project number 2023SKZ03. (Yong Zhang) 2023 Jiaying University Provincial Primary and Secondary School Teacher Education Development Center Project: Practical Research on the Construction and Cultivation of Critical Thinking of Teachers in Rural Middle Schools in the Northeast, East and West of Guangdong, Project number JCJY20232021. (Yong Zhang) 2023 Project of Guangdong Province North of Guangdong Rural Pre-school Education Development and Research Center: Research on Kindergarten Aesthetic Education Curriculum System in North Guangdong Rural Area: Integration of Rural Aesthetic Education Perspectives. Project No. 2023YBXXY09 (Yong Zhang). 2023 Jiaying University Teaching Quality and Teaching Reform Project (including Teaching Reform) Project: A Comparative Study on the Characteristics of Science Education Undergraduate Specialty Construction in Eastern Guangdong and Guangdong-Hong Kong-Macao Greater Bay Area No. 60 (Yong Zhang) 2024 Guangdong Education Science Planning Project (Higher Education Special): An Exploratory Study on Integrating Xi Jinping's Important Discourse on New Quality Productivity with the Construction of Big Concepts in Science Education in Primary and Secondary Schools in Eastern Guangdong. (Yong Zhang)

참고문헌

  1. Alesadi, A., Galehdari, M. and Shojaee, S. (2017),"Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera's unified formulation based on Isogeometric approach", Comput. Struct., 183, 38-47, https://doi.org/10.1016/j.compstruc.2017.01.013.
  2. Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct., 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285.
  3. Arbabi, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis", Wind Sstruct., 24(5), 431-446. https://doi.org/10.12989/was.2017.24.5.431
  4. Azmi, M., Kolahchi, R. and Rabani Bidgoli, M. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concr. Constr., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051.
  5. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A., (2019),"Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466, https://doi.org/10.12989/sem.2019.69.4.457.
  6. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2023), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. http://doi.org/10.12989/anr.2023.7.5.351.
  7. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R., (2018), Buckling of beams retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concr., 18(6), 1053-106, https://doi.org/10.12989/cac.2016.18.6.1053.
  8. Golabchi, H., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concr., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  9. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018a), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213 . https://doi.org/10.1016/j.ijmecsci.2018.01.026 .
  10. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018b), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299.
  11. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018c), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dynam. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002
  12. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019a), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  13. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Nouri, A.H. (2019b), "Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory", Int. J. Mech. Sci., 153, 391-401. https://doi.org/10.1016/j.ijmecsci.2019.02.008.
  14. Hajmohammad, M.H., Zarei, M.S., Kolahchi, R. and Karami, H. (2019c), "Visco-piezoelasticity-zigzag theories for blast response of porous beams covered by graphene platelet-reinforced piezoelectric layers", J. Sandw. Struct. Mat., 1099636219839175. https://doi.org/10.1177/1099636219839175.
  15. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  16. Keshtegar, B. and Kolahchi, R. (2018), "Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory", Steel Compos. Struct., 28(2), 195-20. https://doi.org/10.12989/scs.2018.28.2.195.
  17. Keshtegar, B., Xiao, M., Kolahchi, R. and Trung, N.T. (2020a), "Reliability analysis of stiffened aircraft panels using adjusting mean value method", AIAA J., 58, 5448-5458, https://doi.org/10.2514/1.J059636
  18. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A Solids, 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010
  19. Keshtegar, B., Tabatabaei, J., Kolahchi, R. and Trung, N.T. (2020c), "Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load", Adv. Concr. Constr., 9(3), 327-335. https://doi.org/10.12989/acc.2020.9.3.327.
  20. Khelifa, Z., Hadji, L., Hassaine Daouadji, T. and Bourada, M., (2018),"Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130, https://doi.org/10.12989/sem.2018.67.2.125.
  21. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29, 3669-3677, https://doi.org/10.1007/s12206-015-0811-9.
  22. Kolahchi, R., Hosseini, H. and Esmailpour, M., (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186, https://doi.org/10.1016/j.compstruct.2016.08.032.
  23. Kolahchi, R., Safari, M. and Esmailpour, M., (2016b),"Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265, https://doi.org/10.1016/j.compstruct.2016.05.023.
  24. Mehar, K. and Panda, S.K. (2023), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. http://doi.org/10.12989/anr.2023.7.3.181.
  25. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concr., 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361.
  26. Motezaker, M. and Kolahchi, R. (2017b), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concr., 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  27. Mun, S. and Cho, Y.H. (2012),"Modified harmony search optimization for constrained design problems", Expert Syst. Appl., 39, 419-423. https://doi.org/10.1016/j.eswa.2011.07.031.
  28. Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2021), "Application of differential quadrature and Newmark methods for dynamic response in pad concrete foundation covered by piezoelectric layer", J. Comput. Appl. Math., 382, 113075. https://doi.org/10.1016/j.cam.2020.113075.
  29. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  30. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded beams reinforced with SiO2 nano-particles", Wind. Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.