DOI QR코드

DOI QR Code

Scale-dependent buckling of embedded thermo-electro-magneto-elastic cylindrical nano-shells with different edge conditions

  • Yifei Gui (School of Mechanical Engineering, Shanghai DianJi University) ;
  • Honglei Hu (School of Mechanical Engineering, Shanghai DianJi University)
  • 투고 : 2023.09.26
  • 심사 : 2024.06.05
  • 발행 : 2024.06.25

초록

A new analytical buckling solution of a thermo-electro-magneto-elastic (TEME) cylindrical nano-shell made of BiTiO3-CoFe2O4 materials is obtained based on Hamiltonian approach. The Winkler and Pasternak elastic foundations as well as thermo-electro-magneto-mechanical loadings are applied, and two different types of edge conditions are taken into the investigation. According to nonlocal strain gradient theory (NSGT) and surface elasticity theory in conjunction with the Kirchhoff-Love theory, governing equations of the nano-shell are acquired, and the buckling bifurcation condition is obtained by adopting the Navier's method. The detailed parameter study is conducted to investigate the effects of axial and circumferential wave numbers, scale parameters, elastic foundations, edge conditions and thermo-electro-magnetic loadings on the buckling behavior of the nano-shell. The proposed model can be applied in design and analysis of TEME nano components with multi-field coupled behavior, multiple edge conditions and scale effect.

키워드

참고문헌

  1. Arefi, M., Kiani, M. and Zamani, M.H. (2020), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater., 22, 2157-2185. https://doi.org/10.1177/1099636218795378. 
  2. Boyina, K. and Piska, R. (2023), "Wave propagation analysis in viscoelastic Timoshenko nanobeams under surface and magnetic field effects based on nonlocal strain gradient theory", Appl. Math. Comput., 439, 127580. https://doi.org/10.1016/j.amc.2022.127580. 
  3. Dai, H.M. and Safarpour, H. (2021), "Frequency and thermal buckling information of laminated composite doubly curved open nanoshell", Adv. Nano Res., 10(1), 1-14. https://doi.org/10.12989/anr.2021.10.1.001. 
  4. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347. 
  5. Farzad, E. and Parisa, H. (2017), "Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory", Acta Mechanica Solida Sinica, 30, 647-657. https://doi.org/10.1016/j.camss.2017.09.007. 
  6. Frankland, S.J.V., Caglar, A., Brenner, D.W. and Griebel, M. (2002), "Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube polymer interfaces", J. Phys. Chem. B, 106, 3046-3048. https://doi.org/10.1021/jp015591+. 
  7. Fraternali, F. and Paulino, G.H. (2020), "Mechanics research communications special issue on advances in mechanical metamaterials and smart structures", Mech. Res. Commun., 107, 103531. https://doi.org/10.1016/j.mechrescom.2020.103531. 
  8. Ghorbani, K., Rajabpour, A., Ghadiri, M. and Keshtkar, Z. (2020), "Investigation of surface effects on the natural frequency of a functionally graded cylindrical nanoshell based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 135, 701. https://doi.org/10.1140/epjp/s13360-020-00712-1. 
  9. Ghorbanpour, A.A., Abdollahian, M., Kolahchi, R. and Rahmati, A.H. (2013), "Electro-thermo-torsional buckling of an embedded armchair DWBNNT using nonlocal shear deformable shell model", Compos. Part B Eng., 51, 291-299. https://doi.org/10.1016/j.compositesb.2013.03.017. 
  10. Gui, Y.F. and Li, Z.S. (2023), "A nonlocal strain gradient shell model with surface effect for buckling analysis of magneto-electro-thermo-elastic cylindrical nanoshell subjected to axial load", Phys. Chem. Chem. Phys., 25, 24838-24852. https://doi.org/10.1039/D3CP02880A. 
  11. Gui, Y.F. and Wu, R.J. (2023), "Buckling analysis of embedded thermo-magneto-electro-elastic nano cylindrical shell subjected to axial load with nonlocal strain gradient theory", Mech. Res. Commun., 128, 104043. https://doi.org/10.1016/j.mechrescom.2023.104043. 
  12. Hamidi, B.A., Hosseini, S.A. and Hayati, H. (2022), "Forced torsional vibration of nanobeam via nonlocal strain gradient theory and surface energy effects under moving harmonic torque", Waves Random Complex Med., 32, 318-333. https://doi.org/10.1080/17455030.2020.1772523. 
  13. Hosseini, S.M.J., Torabi, J., Ansari, R. and Zabihi, A. (2021), "Geometrically nonlinear electromechanical instability of FG nanobeams by nonlocal strain gradient theory", Int. J. Struct. Stabil. Dyn., 21, 2150051. https://doi.org/10.1142/S0219455421500516. 
  14. Huang, Y.Z., Feng, M.L. and Chen, X.H. (2022), "Pull-in instability and vibration of quasicrystal circular nanoplate actuator based on surface effect and nonlocal elastic theory", Arch. Appl. Mech., 92, 853-866. https://doi.org/10.1007/s00419-021-02077-y. 
  15. Jamalpoor, A., Ahmadi-Savadkoohi, A., Hosseini, M. and Hosseini-Hashemi, S. (2017), "Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco-Pasternak medium via nonlocal elasticity theory", Eur. J. Mech. A Solids, 63, 84-98. https://doi.org/10.1016/j.euromechsol.2016.12.002. 
  16. Jena, S.K., Chakraverty, S. and Tornabene, F. (2019), "Dynamical behavior of nanobeam embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic foundation using first-order nonlocal strain gradient model", Mater. Res. Exp., 6, 850. https://doi.org/10.1088/2053-1591/ab2779. 
  17. Karimi, M. and Farajpour, M.R. (2019), "Bending and buckling analyses of BiTiO3-CoFe2O4 nanoplates based on nonlocal strain gradient and modified couple stress hypotheses: rate of surface layers variations", Appl. Phys., 125, 530.1-530.16. https://doi.org/10.1007/s00339-019-2811-6. 
  18. Karimi, M. and Rafieian, S. (2019), "A comprehensive investigation into the impact of nonlocal strain gradient and modified couple stress models on the rates of surface energy layers of BiTiO3-CoFe2O4 nanoplates: A vibration analysis", Mater. Res. Exp., 6, 075038. https://doi.org/10.1088/2053-1591/ab151b. 
  19. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Materi. Struct., 23, 125036. https://doi.org/10.1088/0964-1726/23/12/125036. 
  20. Li, Z.W., Chen, B., Lin, B.C., Zhao, X. and Li, Y.H. (2022), "Analytical solutions of the forced vibration of Timoshenko micro/nano-beam under axial tensions supported on Winkler-Pasternak foundation", Eur. Phys. J. Plus, 137, 153. https://doi.org/10.1140/epjp/s13360-022-02360-z. 
  21. Liew, K.M., He, X.Q. and Wong, C.H. (2004), "On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation", Acta Materialia, 52, 2521-2527. https://doi.org/10.1016/j.actamat.2004.01.043. 
  22. Lu, L., Zhu, L., Guo, X.M., Zhao, J.Z. and Liu, G.Z. (2019), "A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells", Appl. Math. Mech., 40, 1695-1722. https://doi.org/10.1007/s10483-019-2549-7. 
  23. Mamandi, A. (2023), "Nonlocal large deflection analysis of a cantilever nanobeam on a nonlinear Winkler-Pasternak elastic foundation and under uniformly distributed lateral load", J. Mech. Sci. Technol., 37, 813-824. https://doi.org/10.1007/s12206-023-0124-3. 
  24. Moaaz, O., Abouelregal, A.E. and Alsharari, F. (2022), "Lateral vibration of an axially moving thermoelastic nanobeam subjected to an external transverse excitation", AIMS Math., 8, 2272-2295. 10.3934/math.2023118. 
  25. Momeni-Khabisi, H. and Tahani, M. (2022), "A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips", Adv. Nano Res., 12(4), 427-440. https://doi.org/10.12989/anr.2022.12.4.427. 
  26. Ni, Y.W., Zhu, S.B., Sun, J.B., Tong, Z.Z., Zhou, Z.H. and Xu, X.S. (2020), "Analytical buckling solution of magneto-electro-thermo-elastic cylindrical shells under multi-physics fields", Compos. Struct., 239, 112021. https://doi.org/10.1016/j.compstruct.2020.112021. 
  27. Nicolae, H., Bogdan, M. and Vasile, M. (2022), "Nonlinear vibration of double-walled carbon nanotubes subjected to mechanical impact and embedded on Winkler-Pasternak foundation", Materials, 15, 8599. https://doi.org/10.3390/ma15238599. 
  28. Pham, Q., Nguyen, P., Tran, V.K., Lieu, Q.X. and Tran, T.T. (2023), "Modified nonlocal couple stress isogeometric approach for bending and free vibration analysis of functionally graded nanoplates", Eng. Comput., 39, 993-1018. https://doi.org/10.1007/s00366-022-01726-2. 
  29. Qu, Y.L., Pan, E., Zhu, F., Jin, F. and Roy, A.K. (2023), "Modeling thermoelectric effects in piezoelectric semiconductors: New fully coupled mechanisms for mechanically manipulated heat flux and refrigeration", Int. J. Eng. Sci., 182, 103775. https://doi.org/10.1016/j.ijengsci.2022.103775. 
  30. Timesli, A. (2020), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69-82. https://doi.org/10.12989/anr.2020.9.2.069. 
  31. Timesli, A. (2021), "A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls", Adv. Nano Res., 11(6), 581-593. https://doi.org/10.12989/anr.2021.11.6.581. 
  32. Tiwari, R., Abouelregal, A.E., Shivay, O.N. and Megahid, S.F. (2022), "Thermoelastic vibrations in electro-mechanical resonators based on rotating microbeams exposed to laser heat under generalized thermoelasticity with three relaxation times", Mech. Time Depend. Mater., 1-25. https://doi.org/10.1007/s11043-022-09578-5. 
  33. Tran, M.T., Nguyen, V.L., Pham, S. and Rungamornrat, J. (2020), "Free vibration of stiffened functionally graded circular cylindrical shell resting on Winkler-Pasternak foundation with different boundary conditions under thermal environment", Acta Mech., 231, 2545-2564. https://doi.org/10.1007/s00707-020-02658-y. 
  34. Wang, X. and Jin, F. (2022), "Shear horizontal wave propagation in multilayered magneto-electro-elastic nanoplates with consideration of surface/interface effects and nonlocal effects", Waves Random Complex Med., 1-20. https://doi.org/10.1080/17455030.2022.2134599. 
  35. Wang, Y., Feng, C., Zhao, Z., Lu, F.Z. and Yang, J. (2018a), "Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout", Compos. Struct., 197, 72-79. https://doi.org/10.1016/j.compstruct.2018.05.056. 
  36. Wang, Y., Feng, C., Zhao, Z. and Yang, J. (2018b), "Buckling of graphene platelet reinforced composite cylindrical shell with cutout", Int. J. Struct. Stabil. Dyn., 18, 1850040. https://doi.org/10.1142/S0219455418500402.
  37. Wang, Y., Feng, C., Zhao, Z. and Yang, J. (2018c), "Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL)", Compos. Struct., 202, 38-46. https://doi.org/10.1016/j.compstruct.2017.10.005. 
  38. Zeighampour, H., Beni, Y.T. and Kiani, Y. (2020), "Electric field effects on buckling analysis of Boron-Nitride nanotubes using surface elasticity theory", Int. J. Struct. Stabil. Dyn., 20, 2050137. https://doi.org/10.1142/S0219455420501370. 
  39. Zhang, G.Y., Gao, X.L. and Littlefield, A.G. (2021), "A non-classical model for circular cylindrical thin shells incorporating microstructure and surface energy effects", Acta Mechanica, 232, 2225-2248. https://doi.org/10.1007/s00707-020-02873-7. 
  40. Zhang, G.Y., Qu, Y.L., Gao, X.L. and Jin, F. (2020), "A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects", Mech. Mater., 149, 103412. https://doi.org/10.1016/j.mechmat.2020.103412. 
  41. Zur, K.K., Arefi, M., Kim, J. and Reddy, J.N. (2020), "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Compos. Part B, Eng., 182, 107601. https://doi.org/10.1016/j.compositesb.2019.107601.