DOI QR코드

DOI QR Code

Acceleration data and shape change characteristics of a gravity quay wall according to inclination condition grades

  • Su-Kyeong Geum (Department of Civil Engineering, Inha University) ;
  • Jong-Han Lee (Department of Civil Engineering, Inha University) ;
  • Dohyoung Shin (Department of Civil Engineering, Inha University) ;
  • Jiyoung Min (Sustainable Infrastructure Research Center, Korea Institute of Civil Engineering and Building Technology)
  • Received : 2024.03.31
  • Accepted : 2024.06.17
  • Published : 2024.06.25

Abstract

This study investigated the acceleration response and shape change characteristics of a gravity quay wall according to the magnitude of the applied acceleration. The quay wall was defined as a port facility damaged by the Kobe earthquake. Four experimental scenarios were established based on the inclination condition grades, considered to be a significant defect factor in the quay wall. Then, the shaking table test was conducted using scaled-down quay wall models constructed per each scenario. The ground acceleration was gradually increased from the peak ground acceleration (PGA) of 0.1 g to 0.7 g. After each ground acceleration test, acceleration installed on the wall and backfill ground and inclination on the top of the wall were measured to assess the amplification of peak response acceleration and maximum response amplitude and the change in the inclination of the quay wall. This study also analyzed the separation of the quay wall from the backfill and the crack pattern of the backfill ground according to PGA values and inclination condition grades. The result of this study shows that response acceleration could provide a reasonable prediction for the changes in the inclination of the quay wall and the crack generation and propagation on the backfill from a current inclination condition grade.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) funded by the Korean government (MSIT) (No. RS-2023-00217983) and the Korea Institute of Marine Science & Technology Promotion (No. 20210659) funded by the Ministry of Oceans and Fisheries.

References

  1. Abu Taiyab, M., Alam, M.J. and Abedin, M.Z. (2014), "Dynamic soil-structure interaction of a gravity quay wall and the effect of densification in liquefiable sites", Int. J. Geomech., 14(1), 20-33. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000278. 
  2. Alam, M.J., Towhata, I. and Sato, H. (2004), "Earthquake damage mitigation of existing gravity type caisson quay wall by sand compaction piles", Proceedings of the Japan National Conference on Geotechnical Engineering the 39th Japan National Conference on Geotechnical Engineering, 1943-1944. 
  3. Aldelfee, A.N. and Aldefae, A.H. (2021), "Seismic performance of gravity quay wall", IOP Conf. Ser.: Mater. Sci. Eng., 1058(1), 012033. https://doi.org/10.1088/1757-899X/1058/1/012033. 
  4. Aldelfee, A.N., Aldefae, A.H. and Humaish, W.H. (2021), "Quick review of seismic behavior of gravity quay wall", IOP Conf. Ser.: Mater. Sci. Eng., 1058(1), 012046. https://doi.org/10.1088/1757-899X/1058/1/012046. 
  5. Alyami, M., Wilkinson, S.M., Rouainia, M. and Cai, F. (2007), "Simulation of seismic behaviour of gravity quay wall using a generalized plasticity model", Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece. 
  6. Ansari, A., Rao, K.S. and Jain, A.K. (2023), "An integrated approach to model seismic loss for the Himalayan infrastructure projects: Decision-making and functionality concept for disaster mitigation", Bull. Eng. Geol. Environ., 82(10), 393. https://doi.org/10.1007/s10064-023-03422-x. 
  7. Ansari, A., Rao, K.S. and Jain, A.K. (2023), "Seismic response and fragility evaluation of circular tunnels in the Himalayan region: Implications for post-seismic performance of transportation infrastructure projects in Jammu and Kashmir", Tunnel. Undergr. Space Technol., 137, 105118. https://doi.org/10.1016/j.tust.2023.105118. 
  8. Ansari, A., Rao, K.S., Jain, A.K. and Ansari, A. (2023), "Deep learning model for predicting tunnel damages and track serviceability under seismic environment", Model. Earth Syst. Environ., 9(1), 1349-1368. https://doi.org/10.1007/s40808-022-01556-7. 
  9. Baziar, M.H., Sanaie, M., Amirabadi, O.E., Khoshniazpirkoohi, A. and Azizkandi, A.S. (2020), "Mitigation of hunchbacked gravity quay wall displacement due to dynamic loading using shaking tables", Ocean Eng., 216, 108056. https://doi.org/10.1016/j.oceaneng.2020.108056. 
  10. Boujmaa, M.A. and Khelalfa, H. (2022), "Geotechnical stability analysis of the Quay Wall of Port Ksar Sghir, Morocco", J. Earth Marine Technol. (JEMT), 2(2), 73-78. https://doi.org/10.31284/j.jemt.2022.v2i2.2374. 
  11. Ghalandarzadeh, A., Rahimi, S. and Kavand, A. (2020), "Dynamic pore water pressure of submerged backfill on caisson quay walls: 1 g shake table tests", Soil Dyn. Earthq. Eng., 132, 106091. https://doi.org/10.1016/j.soildyn.2020.106091. 
  12. Goerlandt, F. and Islam, S. (2021), "A Bayesian network risk model for estimating coastal maritime transportation delays following an earthquake in British Columbia", Reliab. Eng. Syst. Saf., 214, 107708. https://doi.org/10.1016/j.ress.2021.107708. 
  13. Guechari, L., Seghir, A., Kada, O. and Becheur, A. (2023), "Seismic damage assessment of a large concrete gravity dam", Earthq. Struct., 25(2), 125-134. https://doi.org/10.12989/eas.2023.25.2.125. 
  14. Hamada, M. (2022), "Measures for enhancement of earthquake resilience of waterfront energy industries", Lifelines 2022, 61-70. https://doi.org/10.1061/9780784484432.006. 
  15. Hamano, G., Ishii, H., Iimura, K., Takabatake, T., Stolle, J., Esteban, M. and Shibayama, T. (2020), "Evaluation of force exerted by tetrapods displaced by tsunami on caisson breakwater return wall", Coast. Eng. J., 62(2), 170-181. https://doi.org/10.1080/21664250.2020.1723194. 
  16. Inagaki, H., Iai, S., Sugano, T., Yamazaki, H. and Inatomi, T. (1996), "Performance of caisson type quay walls at Kobe port", Soil. Found., 36, 119-136. https://doi.org/10.3208/sandf.36.Special_119. 
  17. Karafagka, S., Fotopoulou, S., Karatzetzou, A., Kroupi, G. and Pitilakis, K. (2023), "Seismic performance and vulnerability of gravity quay wall in sites susceptible to liquefaction", Acta Geotechnica, 18(5), 2733-2754. https://doi.org/10.1007/s11440-022-01738-8. 
  18. Kim, H.J., Jung, S. and Cho, S. (2023), "Evaluation of dynamic behaviors of gravity-based structures under seismic load considering fluid-structure-ground interactions", Struct. Eng. Mech., 88(3), 251. https://doi.org/10.12989/sem.2023.88.3.251. 
  19. Kim, S.R., Kwon, O.S. and Kim, M.M. (2004), "Assessment of force components acting on gravity type quay walls during earthquakes", Soil Dyn. Earthq. Eng., 24(11), 853-866. https://doi.org/10.1016/j.soildyn.2004.04.007. 
  20. Kim, Y.S., Lee, M.G., Cho, G.C. and Ko, K.W. (2022), "Inertial behavior of gravity-type quay wall: A case study using dynamic centrifuge test", Soil Dyn. Earthq. Eng., 155, 107196. https://doi.org/10.1016/j.soildyn.2022.107196. 
  21. Kishi, N., Asada, A., Abukawa, K. and Fujisawa, K. (2015), "Inspection methods for underwater structures of ports and harbors", 2015 IEEE Underwater Technology (UT), 1-5. https://doi.org/10.1109/UT.2015.7108265. 
  22. Ko, Y.Y., Yang, H.H., Hu, C.W., Huang, Y.J. and Lin, Y.Y. (2024), "Numerical seismic performance assessment and fragility analysis for gravity-type wharves considering the influence of soil liquefaction", Soil Dyn. Earthq. Eng., 180, 108581. https://doi.org/10.1016/j.soildyn.2024.108581. 
  23. Lee, C.H., Park, J.H., Kim, S.Y., Kim, D.K. and Jun, S.C. (2022), "Structural damage potentials and design implications of 2016 Gyeongju and 2017 Pohang earthquakes in Korea", Earthq. Struct., 22(3), 305-318. https://doi.org/10.12989/eas.2022.22.3.305. 
  24. Lee, M.G., Ha, J.G., Cho, H.I., Sun, C.G. and Kim, D.S. (2021), "Improved performance-based seismic coefficient for gravity-type quay walls based on centrifuge results", Acta Geotechnica, 16, 1187-1204. https://doi.org/10.1007/s11440-020-01086-5. 
  25. MLIT (Ministry of Land, Infrastructure, Transport) (2014), Port Facility Inspection Diagnostic Guidelines, Japan.
  26. Moghadam, A.M., Ghalandarzadeh, A., Towhata, I., Moradi, M., Ebrahimian, B. and Hajialikhani, P. (2009), "Studying the effects of deformable panels on seismic displacement of gravity quay walls", Ocean Eng., 36(15-16), 1129-1148. https://doi.org/10.1016/j.oceaneng.2009.08.006. 
  27. MOLIT (Ministry of Land, Infrastructure and Transport) (2016), Structural Foundation Design Standards, South Korea. 
  28. MOLIT (Ministry of Land, Infrastructure and Transport) (2023), Detailed Guidelines for Implementation of Safety and Maintenance of Facilities, Jinju, South Korea. 
  29. Mori, N., Yasuda, T., Arikawa, T., Kataoka, T., Nakajo, S., Suzuki, K., Yamanaka, Y. and Webb, A. (2019), "2018 Typhoon Jebi post-event survey of coastal damage in the Kansai region, Japan", Coast. Eng. J., 61(3), 278-294. https://doi.org/10.1080/21664250.2019.1619253. 
  30. Motamed, R. and Towhata, I. (2010), "Shaking table models on pile groups behind quay walls subjected to lateral spreading", J. Geotech. Geoenviron. Eng., 136(3), 477-489. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000115. 
  31. Nguyen, A.D., Nguyen, V.T. and Kim, Y.S. (2023), "Finite element analysis on dynamic behavior of sheet pile quay wall dredged and improved seaside subsoil using cement deep mixing", Int. J. Geo-Eng., 14(1), 9. https://doi.org/10.1186/s40703-023-00186-x. 
  32. PIANC (2001), Seismic Design Guidelines for Port Structures, International Navigation Association, Tokyo. 
  33. Stolle, J., Nistor, I. and Goseberg, N. (2016), "Optical tracking of floating shipping containers in a high-velocity flow", Coast. Eng. J., 58(2), 1650005. https://doi.org/10.1142/S0578563416500054. 
  34. Sugano, T., Nakamichi, M., Sugaya, M., Sezaki, Y., Iwai, T., Moriya, M. and Horaya, K. (2004), "Development of 'wedged caisson' as a quay wall structure and its application to Hidaka-port Japan", Oceans' 04 MTS/IEEE Techno-Ocean'04 (IEEE Cat. No. 04CH37600), 4, 2072-2077. https://doi.org/10.1109/OCEANS.2004.1406462. 
  35. Suppasri, A., Koshimura, S., Imai, K., Mas, E., Gokon, H., Muhari, A. and Imamura, F. (2012), "Damage characteristic and field survey of the 2011 Great East Japan Tsunami in Miyagi Prefecture", Coast. Eng. J., 54(1), 1250005-1. https://doi.org/10.1142/S0578563412500052. 
  36. Tohno, I. and Yasuda, S. (1981), "Liquefaction of the ground during the 1978 Miyagiken-Oki earthquake", Soil. Found., 21(3), 18-34. https://doi.org/10.3208/sandf1972.21.3_18. 
  37. USACE (U.S. Army Corps of Engineers) (2002), Coastal Engineering Manual (CEM), Washington, DC. 
  38. Venkatesh, V., Kodoth, K., Jacob, A. A., Upadhyay, V., Jhunjhunwala, T., Rajagopal, P., ... & Balasubramaniam, K. (2022), "Non-destructive testing of quay walls using submersible Remotely Operated Vehicles (ROV)", Waterways Around the North Sea Coast, OCEANS 2022-Chennai, 1-6. 
  39. Wei, Y.C., Lee, C.J., Hung, W.Y. and Chen, H.T. (2010), "Application of Hilbert-Huang transform to characterize soil liquefaction and quay wall seismic responses modeled in centrifuge shaking-tables", Soil Dyn. Earthq. Eng., 30(7), 614-629. https://doi.org/10.1016/j.soildyn.2010.02.005. 
  40. Yuksel, Z.T., Gerolymos, N. and Yuksel, Y. (2023), "On the seismic performance of block type quay walls: Numerical analyses against 1g shaking tank tests", Ocean Eng., 281, 114942. https://doi.org/10.1016/j.oceaneng.2023.114942. 
  41. Zhang, K., Lu, F., Peng, Y. and Li, X. (2022), "A novel method for generation and prediction of crack propagation in gravity dams", Struct. Eng. Mech., 81(6), 665-675. https://doi.org/10.12989/sem.2022.81.6.665. 
  42. Zhang, X., Zhang, S., Wang, Z. and Zhang, L. (2020, February), "An investigation of seismic liquefaction damage and an anti-liquefaction technique for a gravity caisson wharf", IOP Conf. Ser.: Earth Environ. Sci., 455(1), 012051. https://doi.org/10.1088/1755-1315/455/1/012051. 
  43. Zhang, Y.L., Wang, C.L., Ding, X.M. and Wu, Q. (2022), "Dynamic behavior of gravity retaining walls with coral sand backfill under earthquakes: Shaking table tests", Chin. Ocean Eng., 36(6), 839-848. https://doi.org/10.1007/s13344-022-0074-z.