DOI QR코드

DOI QR Code

Evaluation method and experimental study on seismic performance of column-supported group silo

  • Jia Chen (School of Civil Engineering, Henan University of Technology) ;
  • Yonggang Ding (School of Civil Engineering, Henan University of Technology) ;
  • Qikeng Xu (School of Civil Engineering, Henan University of Technology) ;
  • Qiang Liu (School of Civil Engineering, Henan University of Technology) ;
  • Yang Zhou (School of Civil Engineering, Henan University of Technology)
  • 투고 : 2024.01.03
  • 심사 : 2024.06.12
  • 발행 : 2024.06.25

초록

Considering the Column-Supported Group Silos (CSGSs) often arranged by rows in practical applications, earthquake responses will be affected by group effect. Since group effect presenting uncertainties, establishing the analytic model and evaluating characteristics of CSGSs seems necessary. This study aimed at providing a simplified method to evaluate seismic performances of the CSGSs. Firstly, the CSGSs with different storage granule heights are used as numerical examples to derive the base shear formula for three-particle dynamic analytical model. Then, the base shear distribution coefficient is defined as the group effect index. The simplified calculation method of the group silos based on the distribution coefficients is proposed. Finally, based on the empty, half, and full granular storage conditions, the empirical design parameters for the group silos system are given by combining finite element simulation with shaking table test. The group effect of storage granule heights of group silos on its frequency and base shear are studied by comparative analysis between group silos and independent single silo. The results show that the frequency of CSGSs decreases with the increasing weight of the stored granule. The connection between the column top and silo bottom plate is vulnerable, and structural measures should be strengthened to improve its damage resistance. In case of different storage granule heights, distribution coefficients are effective to reconstruction the group effect. The complex calculations of seismic response for CSGSs can be avoided by adopting the empirical distribution coefficients obtained in this study. The proposed method provides a theoretical reference for evaluation on the seismic performances of the CSGSs.

키워드

과제정보

This paper is supported by the Key Technologies R & D Program of Henan Provincial Department of Science and Technology (232102320186), the Open Research Subject of Henan key Laboratory of Grain and Oil Storage Facility & Safety project (2022KF02 and 2022KF04), and the Research Fund for the Doctoral Program of Henan university of technology (2020BS044).

참고문헌

  1. Arivoli, M., Biswas, A., Burroughs, N., Wilson, P., Salzman, C., Kakembo, N., Mugaga, J., Ssekitoleko, R.T., Saterbak, A. and Fitzgerald, T.N. (2020), "Multidisciplinary development of a low-cost gastroschisis silo for use in sub-saharan africa", J. Surg. Res., 255, 565-574. https://doi.org/10.1016/j.jss.2020.05.037.
  2. Bayraktar, A., Sevim, B., Altunisik, A.C. and Turker, T. (2010), "Effect of the model updating on the earthquake behavior of steel storage tanks", J. Constr. Steel Res., 66(3), 462-469. https://doi.org/10.1016/j.jcsr.2009.10.006.
  3. Chen, Q., Li, R., Xiu, W., Zivkovic, V. and Yang, H. (2022), "Relationship between mass discharge rate and granular temperature of silo flow with variance of outlets", Particuology, 63, 76-82. https://doi.org/10.1016/j.partic.2021.05.001.
  4. Chen, Z., Li, X., Yang, Y., Zhao, S. and Fu, Z. (2018), "Experimental and numerical investigation of the effect of temperature patterns on behavior of large scale silo", Eng. Fail. Anal., 91, 543-553. https://doi.org/10.1016/j.engfailanal.2018.04.043.
  5. Chowdhury, I.R. and Singh, J.P. (2013), "Dynamic response of rectangular bunker walls considering earthquake force", Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management, Springer, India. https://doi.org/10.1007/978-81-322-0757-3_36.
  6. Djelloul, Z. and Mohammed, D. (2018), "Contribution to the seismic behaviour of steel silos: Full finite-element analysis versus the Eurocode approach", Asian J. Civil Eng., 19, 757-773. https://doi.org/10.1007/s42107-018-0062-z.
  7. Durmus, A. and Livaoglu, R. (2015), "A simplified 3 D.O.F. model of A FEM model for seismic analysis of a silo containing elastic material accounting for soil-structure interaction", Soil Dyn. Earthq. Eng., 77, 1-14. https://doi.org/10.1016/j.soildyn.2015.04.015.
  8. Gandia, R.M., Gomes, F.C., Paula, W.C.D. and Aguado Rodriguez, P.J. (2021), "Evaluation of pressures in slender silos varying hopper angle and silo slenderness", Powder Technol., 394, 478-495. https://doi.org/10.1016/j.powtec.2021.08.087.
  9. Giresini, L. and Butenweg, C. (2019), Earthquake Resistant Design of Structures According to Eurocode 8, Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57550-5_4.
  10. Guo, K., Zhou, C., Meng, L. and Zhang, X. (2016), "Seismic vulnerability assessment of reinforced concrete silo considering granular material-structure interaction", Struct. Des. Tall Spec. Build., 25, 1011-1030. https://doi.org/10.1002/tal.1295.
  11. Hasan, M., Mubarak, A., Fikri, R. and Mahlil (2022), "Crack and strength assessment of reinforced concrete cement plant blending silo structure", Mater. Today Proc., 58, 1312-1318. https://doi.org/10.1016/j.matpr.2022.02.171.
  12. Hashemi, S., Kianoush, R. and Khoubani, M. (2022), "A mechanical model for soil-rectangular tank interaction effects under seismic loading", Soil Dyn. Earthq. Eng., 153, 107092. https://doi.org/10.1016/j.soildyn.2021.107092.
  13. Holler, S. and Meskouris, K. (2006), "Granular material silos under dynamic excitation: Numerical simulation and experimental validation", J. Struct. Eng., 132, 1573-1579. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:10(1573).
  14. Jing, H., Chen, H., Yang, J. and Li, P. (2022), "Shaking table tests on a small-scale steel cylindrical silo model in different filling conditions", Struct., 37, 698-708. https://doi.org/10.1016/j.istruc.2022.01.026.
  15. Khalil, M., Ruggieri, S. and Uva, G. (2022), "Assessment of structural behavior, vulnerability, and risk of industrial silos: State-of-the-art and recent research trends", Appl. Sci., 12(6), 3006. https://doi.org/10.3390/app12063006.
  16. Kirtas, E., Rovithis, E. and Makra, K. (2020), "On the modal response of an instrumented steel water-storage tank including soil-structure interaction", Soil Dyn. Earthq. Eng., 135, 106198. https://doi.org/10.1016/j.soildyn.2020.106198.
  17. Li, X., Ding, Y.G., Liu, Q. and Xu, Q. (2022), "Experimental study on horizontal pressure of column-supported concrete group silos under earthquake force", J. Asian Arch. Build. Eng., 22, 2827-2838. https://doi.org/10.1080/13467581.2022.2160637.
  18. Maj, M. (2017), "Some causes of reinforced concrete silos failure", Procedia Eng., 172, 685-691. https://doi.org/10.1016/j.proeng.2017.02.081.
  19. Mansour, S., Silvestri, S. and Sadowski, A.J. (2022), "The 'miniature silo' test: A simple experimental setup to estimate the effective friction coefficient between the granular solid and a horizontally-corrugated cylindrical metal silo wall", Powder Technol., 399, 117212. https://doi.org/10.1016/j.powtec.2022.117212.
  20. Maraveas, C. (2020), "Concrete silos: Failures, design issues and repair/strengthening methods", Appl. Sci., 10(11), 3938. https://doi.org/10.3390/app11125675.
  21. Nielsen, J. (1998), "Pressures from flowing granular solids in silos", Philos. Trans. Roy. Soc. London. Ser. A: Math., Phys. Eng. Sci., 356, 2667-2684. https://doi.org/10.1098/rsta.1998.0292.
  22. Pascot, A., Gaudel, N., Antonyuk, S., Bianchin, J. and De Richter, S.K. (2020), "Influence of mechanical vibrations on quasi-2D silo discharge of spherical particles", Chem. Eng. Sci., 224, 115749. https://doi.org/10.1016/j.ces.2020.115749.
  23. Pieraccini, L., Palermo, M., Silvestri, S., Gasparini, G. and Trombetti, T. (2016), "Seismic horizontal forces exerted by granular material on flat bottom silos: experimental and analytical results", IABSE Congress: Challenges in Design and Construction of an Innovative and Sustainable Built Environment, Stockholm, Sweden, September.
  24. Pieraccini, L., Silvestri, S. and Trombetti, T. (2015), "Refinements to the Silvestri's theory for the evaluation of the seismic actions in flat-bottom silos containing grain-like material", Bull. Earthq. Eng., 13(11), 3493-3525. https://doi.org/10.1007/s10518-015-9786-2.
  25. Sezen, H., Livaoglu, R. and Dogangun, A. (2008), "Dynamic analysis and seismic performance evaluation of above-ground liquid-containing tanks", Eng. Struct., 30(3), 794-803. https://doi.org/10.1016/j.engstruct.2007.05.002.
  26. Silvestri, S., Gasparini, G., Trombetti, T. and Foti, D. (2012), "On the evaluation of the horizontal forces produced by grain-like material inside silos during earthquakes", Bull. Earthq. Eng., 10(5), 1535-1560. https://doi.org/10.1007/s10518-012-9370-y.
  27. Silvestri, S., Ivorra, S., Chiacchio, L.D., Trombetti, T., Foti, D., Gasparini, G., Pieraccini, L., Dietz, M. and Taylor, C.A. (2016), "Shaking-table tests of flat-bottom circular silos containing grain-like material", Earthq. Eng. Struct. Dyn., 45, 69-89. https://doi.org/10.1002/eqe.2617.
  28. Silvestri, S., Mansour, S., Marra, M., Distl, J., Furinghetti, M., Lanese, I., ... & Weber, F. (2021), "Shaking table tests of a full-scale flat-bottom manufactured steel silo filled with wheat: Main results on the fixed-base configuration", Earthq. Eng. Struct. Dyn., 51, 169-190. https://doi.org/10.1002/eqe.3561.
  29. Tatko, R. and Kobielak, S. (2008), "Horizontal bulk material pressure in silo subjected to impulsive load", Shock Vib., 15, 543-550. https://doi.org/10.1155/2008/289317.
  30. Xu, Q., Zhang, H.J., Liu, Q. and Wang, L. (2020), "Seismic analysis on reinforced concrete group silos through shaking table tests", Struct. Concrete, 22, 1285-1296. https://doi.org/10.1002/suco.202000207.
  31. Yang, J., Zhang, F., Li, P. and Jing, H. (2023), "Seismic performance of column-bearing silo structure with granular materials considering SSI effect", Struct., 47, 595-606. https://doi.org/10.1016/j.istruc.2022.11.064.