DOI QR코드

DOI QR Code

Influence of an inclined load on a nonlocal fiber-reinforced visco-thermoelastic solid via 3PHL

  • Samia M. Said (Department of Mathematics, Faculty of Science, Zagazig University)
  • 투고 : 2024.02.11
  • 심사 : 2024.06.10
  • 발행 : 2024.06.25

초록

The objective of this study is to investigate the influence of an inclined load, location, and time on the behavior of a fiber-reinforced visco-thermoelastic half-space. The displacement, stress, and temperature distributions are derived from the normal mode analysis. The problem is analyzed using a three-phase-lag model. MATLAB programming is employed to ascertain the physical fields with appropriate boundary conditions and to perform numerical computations. The outcomes are then examined with different inclination loads, time, and location settings.

키워드

참고문헌

  1. Abo-Dahab, S.M., Jahangir, A., Muhammad, N., Farwa, S., Bashir, Y. and Usman, M. (2018), "Propagation phenomena in a viscothermo-micropolar elastic medium under the effect of microtemperature", Res. Phys., 8, 793-798. https://doi.org/10.1016/j.rinp.2017.12.064.
  2. Abouelregal, A.E., Akgoz, B. and Civalek, O. (2023), "Magneto-thermoelastic interactions in an unbounded orthotropic viscoelastic solid under the hall current effect by the fourth-order Moore-Gibson-Thompson equation", Comput. Math. Appl., 141, 102-115. https://doi.org/10.1016/j.camwa.2023.04.001.
  3. Alharbi, A.M., Said, S.M. and Othman, M.I.A. (2021), "The effect of multi-phase-lag and coriolis acceleration on a fiber-reinforced isotropic thermoelastic medium", Steel. Compos. Struct., 39(2), 125-134. https://doi.org/10.12989/scs.2021.39.2.125.
  4. Banik, S. and Kanoria, M. (2012), "Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity", Appl. Math. Mech., 33(4), 483-498. https://doi.org/10.1007/s10483-012-1565-8.
  5. Bayones, F.S. and Hussien, N.S. (2017), "Propagation of Rayleigh waves in fiber-reinforced anisotropic solid thermo-viscoelastic media under effect of rotation", Appl. Math. Inf. Sci., 11(5), 1527-1535. https://doi.org/10.18576/amis/110532.
  6. Belfield, A.J., Rogers, T.G. and Spencer, A.J.M. (1983), "Stress in elastic plates reinforced by fiber lying in concentric circles", J. Mech. Phys. Solid., 31(1), 25-54. https://doi.org/10.1016/0022-5096(83)90018-2.
  7. Biot, M.A. (1965), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
  8. Biswas, S. (2024), "The propagation of plane waves in nonlocal visco-thermoelastic porous medium based on nonlocal strain gradient theory", Wave. Random Complex Media, 34(1), 372-403. https://doi.org/10.1080/17455030.2021.1909780.
  9. Bosaeed, A., Hussien, N.S. and Bayones, F.S. (2019), "Influence of rotation and initial stress on propagation of Rayleigh waves in fiber-reinforced solid anisotropic magneto-thermo-viscoelastic media", J. Progres. Res. Math., 14(3), 2419-2436. https://doi.org/10.1080/15376494.2018.1445322.
  10. Eringen, A.C. (1974), "Theory of nonlocal thermoelasticity", Int. J. Eng. Sci., 12(12), 1063-1077. https://doi.org/10.1016/0020-7225(74)90033-0.
  11. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689.
  12. Green, A.E. and Naghdi, P.M. (1991), "A Re-examination of the basic postulate of thermo-mechanics", Proc. Roy. Soc. London. Ser. A: Math. Phys. Sci., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.
  13. Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
  14. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969.
  15. Gupta, R. (2013), "Reflection of waves in visco-thermoelastic transversely isotropic medium", Int. J. Comput. Meth. Eng. Sci. Mech., 14(2), 83-89. https://doi.org/10.1080/15502287.2012.698705.
  16. Jojare, K.K. and Gaikwad, K.R. (2024), "A study of the 3-phase lag model to a two-dimensional isotropic micro-polar thermoelastic medium with memory-dependent properties", J. Therm. Stress., 47(3), 363-382. https://doi.org/10.1080/01495739.2023.2285798.
  17. Kalkal, K.K., Deswal, S. and Poonia, R. (2024), "Two-dimensional deformations in a rotating functionally graded fiber-reinforced thermoelastic half-space with magnetic field", Mech. Bas. Des. Struct. Mach., 52(3), 1543-1560. https://doi.org/10.1080/15397734.2022.2153695.
  18. Kaur, I. and Singh, K. (2021a), "Plane wave in non-local semiconducting rotating media with Hall effect and three-phase lag fractional order heat transfer", Int. J. Mech. Mater. Eng., 16, 14. https://doi.org/10.1186/s40712-021-00137-3.
  19. Kaur, I. and Singh, K. (2021b), "Fiber-reinforced magneto-thermoelastic composite material with hyperbolic twotemperature, fractional-order three-phase lag and new modified couple stress theory", Wave. Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1991603.
  20. Kaur, I. and Singh, K. (2022), "Functionally graded nonlocal thermoelastic nanobeam with memory-dependent derivatives", SN Appl. Sci., 4(12), 329. https://doi.org/10.1007/s42452-022-05212-8.
  21. Kaur, I. and Singh, K. (2023), "Influence of time harmonic source frequency in a fibre-reinforced magneto-thermoelastic material with new modified couple stress and hyperbolic two-temperature theory", Iran. J. Sci. Technol. Trans. Mech. Eng., 47(9), 1093-1107. https://doi.org/10.1007/s40997-022-00562-5.
  22. Kaur, I., Singh, K. and Ghit, G.M.D. (2021d), "New analytical method for dynamic response of thermoelastic damping in simply supported generalized piezothermoelastic nanobeam", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 101(10), e202100108. https://doi.org/10.1002/zamm.202100108.
  23. Kaur, I., Singh, K., Craciun, E.M. and Altenbach, H. (2021c), "Transversely isotropic visco-thermo-elastic nanobeam with time harmonic laser pulse and new modified three phase lag Green-Nagdhi model", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 102(4), e202100263. https://doi.org/10.1002/zamm.202100263.
  24. Koltunov, M. (1976), Creeping and Relaxation, Vysshaya Shkola, Moscow.
  25. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermo-elasticity", J. Mech. Phys. Solid, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  26. Othman, M.I.A. (2009), "Effect of rotation in case of 2-D problem of the generalized thermo-viscoelasticity with two relaxation times", Mech. and Mech. Eng., 13(2), 105-127.
  27. Othman, M.I.A., Lotfy, K.H. and Farouk, R.M. (2009), "Effects of magnetic field and inclined load in micropolar thermoelastic medium possessing cubic symmetry under three theories", Int. J. Ind. Math., 1(2), 87-104.
  28. Othman, M.I.A., Said, S.M. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase lag model", Int. J. Numer. Meth. Heat Fluid Flow, 29(12), 4788-4806. https://doi.org/10.1108/HFF-04-2019-0359.
  29. Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", Int. J. Heat Mass Transf., 51(1-2), 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.
  30. Roy Choudhuri, S.K. (2007), "On a thermoplastic three-phase-lag model", J. Therm. Stress., 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
  31. Said, S.M. (2016), "Influence of gravity on generalized magneto-thermoelastic medium for three-phase-lag model", J. Comput. Appl. Math., 291, 142-157. https://doi.org/10.1016/j.cam.2014.12.016.
  32. Said, S.M. (2020), "Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity", Appl. Math. Mech., 41(5), 819-832. https://doi.org/10.1007/s10483-020-2603-9.
  33. Said, S.M. (2022), "A viscoelastic-micropolar solid with voids and micro-temperatures under the effect of the gravity field", Geomech. Eng., 31(2), 159-166. https://doi.org/10.12989/gae.2022.31.2.159.
  34. Singh, K., Kaur, I. and Craciun, E-M. (2023), "Study of transversely isotropic visco-beam with mmemory-dependent derivative", Math., 11(21), 4416. https://doi.org/10.3390/math11214416.
  35. Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro-to micro-scales", ASME J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
  36. Zenkour, A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model", J. Phys. Chem. Solid., 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213.