참고문헌
- Abo-Dahab, S.M., Jahangir, A., Muhammad, N., Farwa, S., Bashir, Y. and Usman, M. (2018), "Propagation phenomena in a viscothermo-micropolar elastic medium under the effect of microtemperature", Res. Phys., 8, 793-798. https://doi.org/10.1016/j.rinp.2017.12.064.
- Abouelregal, A.E., Akgoz, B. and Civalek, O. (2023), "Magneto-thermoelastic interactions in an unbounded orthotropic viscoelastic solid under the hall current effect by the fourth-order Moore-Gibson-Thompson equation", Comput. Math. Appl., 141, 102-115. https://doi.org/10.1016/j.camwa.2023.04.001.
- Alharbi, A.M., Said, S.M. and Othman, M.I.A. (2021), "The effect of multi-phase-lag and coriolis acceleration on a fiber-reinforced isotropic thermoelastic medium", Steel. Compos. Struct., 39(2), 125-134. https://doi.org/10.12989/scs.2021.39.2.125.
- Banik, S. and Kanoria, M. (2012), "Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity", Appl. Math. Mech., 33(4), 483-498. https://doi.org/10.1007/s10483-012-1565-8.
- Bayones, F.S. and Hussien, N.S. (2017), "Propagation of Rayleigh waves in fiber-reinforced anisotropic solid thermo-viscoelastic media under effect of rotation", Appl. Math. Inf. Sci., 11(5), 1527-1535. https://doi.org/10.18576/amis/110532.
- Belfield, A.J., Rogers, T.G. and Spencer, A.J.M. (1983), "Stress in elastic plates reinforced by fiber lying in concentric circles", J. Mech. Phys. Solid., 31(1), 25-54. https://doi.org/10.1016/0022-5096(83)90018-2.
- Biot, M.A. (1965), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
- Biswas, S. (2024), "The propagation of plane waves in nonlocal visco-thermoelastic porous medium based on nonlocal strain gradient theory", Wave. Random Complex Media, 34(1), 372-403. https://doi.org/10.1080/17455030.2021.1909780.
- Bosaeed, A., Hussien, N.S. and Bayones, F.S. (2019), "Influence of rotation and initial stress on propagation of Rayleigh waves in fiber-reinforced solid anisotropic magneto-thermo-viscoelastic media", J. Progres. Res. Math., 14(3), 2419-2436. https://doi.org/10.1080/15376494.2018.1445322.
- Eringen, A.C. (1974), "Theory of nonlocal thermoelasticity", Int. J. Eng. Sci., 12(12), 1063-1077. https://doi.org/10.1016/0020-7225(74)90033-0.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689.
- Green, A.E. and Naghdi, P.M. (1991), "A Re-examination of the basic postulate of thermo-mechanics", Proc. Roy. Soc. London. Ser. A: Math. Phys. Sci., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969.
- Gupta, R. (2013), "Reflection of waves in visco-thermoelastic transversely isotropic medium", Int. J. Comput. Meth. Eng. Sci. Mech., 14(2), 83-89. https://doi.org/10.1080/15502287.2012.698705.
- Jojare, K.K. and Gaikwad, K.R. (2024), "A study of the 3-phase lag model to a two-dimensional isotropic micro-polar thermoelastic medium with memory-dependent properties", J. Therm. Stress., 47(3), 363-382. https://doi.org/10.1080/01495739.2023.2285798.
- Kalkal, K.K., Deswal, S. and Poonia, R. (2024), "Two-dimensional deformations in a rotating functionally graded fiber-reinforced thermoelastic half-space with magnetic field", Mech. Bas. Des. Struct. Mach., 52(3), 1543-1560. https://doi.org/10.1080/15397734.2022.2153695.
- Kaur, I. and Singh, K. (2021a), "Plane wave in non-local semiconducting rotating media with Hall effect and three-phase lag fractional order heat transfer", Int. J. Mech. Mater. Eng., 16, 14. https://doi.org/10.1186/s40712-021-00137-3.
- Kaur, I. and Singh, K. (2021b), "Fiber-reinforced magneto-thermoelastic composite material with hyperbolic twotemperature, fractional-order three-phase lag and new modified couple stress theory", Wave. Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1991603.
- Kaur, I. and Singh, K. (2022), "Functionally graded nonlocal thermoelastic nanobeam with memory-dependent derivatives", SN Appl. Sci., 4(12), 329. https://doi.org/10.1007/s42452-022-05212-8.
- Kaur, I. and Singh, K. (2023), "Influence of time harmonic source frequency in a fibre-reinforced magneto-thermoelastic material with new modified couple stress and hyperbolic two-temperature theory", Iran. J. Sci. Technol. Trans. Mech. Eng., 47(9), 1093-1107. https://doi.org/10.1007/s40997-022-00562-5.
- Kaur, I., Singh, K. and Ghit, G.M.D. (2021d), "New analytical method for dynamic response of thermoelastic damping in simply supported generalized piezothermoelastic nanobeam", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 101(10), e202100108. https://doi.org/10.1002/zamm.202100108.
- Kaur, I., Singh, K., Craciun, E.M. and Altenbach, H. (2021c), "Transversely isotropic visco-thermo-elastic nanobeam with time harmonic laser pulse and new modified three phase lag Green-Nagdhi model", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 102(4), e202100263. https://doi.org/10.1002/zamm.202100263.
- Koltunov, M. (1976), Creeping and Relaxation, Vysshaya Shkola, Moscow.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermo-elasticity", J. Mech. Phys. Solid, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Othman, M.I.A. (2009), "Effect of rotation in case of 2-D problem of the generalized thermo-viscoelasticity with two relaxation times", Mech. and Mech. Eng., 13(2), 105-127.
- Othman, M.I.A., Lotfy, K.H. and Farouk, R.M. (2009), "Effects of magnetic field and inclined load in micropolar thermoelastic medium possessing cubic symmetry under three theories", Int. J. Ind. Math., 1(2), 87-104.
- Othman, M.I.A., Said, S.M. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase lag model", Int. J. Numer. Meth. Heat Fluid Flow, 29(12), 4788-4806. https://doi.org/10.1108/HFF-04-2019-0359.
- Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", Int. J. Heat Mass Transf., 51(1-2), 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.
- Roy Choudhuri, S.K. (2007), "On a thermoplastic three-phase-lag model", J. Therm. Stress., 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
- Said, S.M. (2016), "Influence of gravity on generalized magneto-thermoelastic medium for three-phase-lag model", J. Comput. Appl. Math., 291, 142-157. https://doi.org/10.1016/j.cam.2014.12.016.
- Said, S.M. (2020), "Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity", Appl. Math. Mech., 41(5), 819-832. https://doi.org/10.1007/s10483-020-2603-9.
- Said, S.M. (2022), "A viscoelastic-micropolar solid with voids and micro-temperatures under the effect of the gravity field", Geomech. Eng., 31(2), 159-166. https://doi.org/10.12989/gae.2022.31.2.159.
- Singh, K., Kaur, I. and Craciun, E-M. (2023), "Study of transversely isotropic visco-beam with mmemory-dependent derivative", Math., 11(21), 4416. https://doi.org/10.3390/math11214416.
- Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro-to micro-scales", ASME J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
- Zenkour, A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model", J. Phys. Chem. Solid., 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213.