DOI QR코드

DOI QR Code

Poisson's ratios of fabric materials in use for large-span membrane structures

  • Jianhui Hu (Space Structures Research Center, Sichuan Research Institute, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ;
  • Wujun Chen (Space Structures Research Center, Sichuan Research Institute, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ;
  • Chengjun Gao (Space Structures Research Center, Sichuan Research Institute, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ;
  • Yibei Zhang (China Academy of Aerospace Science and Innovation) ;
  • Yonglin Chen (School of Civil Engineering, School of Aerospace Engineering and Applied Mechanics, Tongji University) ;
  • Pujin Wang (School of Civil Engineering, School of Aerospace Engineering and Applied Mechanics, Tongji University)
  • Received : 2023.10.06
  • Accepted : 2024.04.23
  • Published : 2024.06.25

Abstract

The utilization of the fabric materials for lightweight building structures has attracted considerable attention due to the multiple functions and high strength-to-weight ratio. The mechanical properties of the fabric materials evolve with the loading cycle, especially for the Poisson's ratio that requires the full cyclic strain to determine the accurate values. The digital image correlation method has been justified but needs to meet the flexibility and complexity requirements of the fabric materials. This paper thus proposes a modified digital image correlation method to quantify the Poisson's ratio of fabric materials. To obtain the accurate Poisson's ratio of fabric materials in the cyclic experiments using non-contact measuring method, a speckle generation of the digital image correlation method is implemented to obtain the strain distribution and strain characteristics. The uniaxial cyclic experiments for the fabric materials are carried out in the warp, weft and 45° directions. The digital image correlation photos are taken when the material properties become stable in the cyclic loading. The results show that the strain distributions are non-uniform and dependent on the specimen directions. The reliable Poisson's ratios of the fabric materials in the warp, weft and 45° directions are 0.016, 1.2 and 2.6. The strain asymmetry at the maximum strain position is related with the weaving architecture. These observations and results are indispensable to understand the Poisson's ratios of fabric materials and to guide the proper analysis of the large-span membrane structures.

Keywords

Acknowledgement

The work was supported by National Natural Science Foundation of China (No. 52278193, 51608320), Shanghai Pujiang Program (No. 22PJ1405600), and Shanghai Municipal Administrative Committee of Housing and Urban-Rural Development (No. 2023-Z02-012). The authors are grateful to the editors and anonymous reviewers for the professional comments and suggestions in improving the quality of the paper.

References

  1. Ambroziak, A. and Klosowski, P. (2014), "Mechanical properties for preliminary design of structures made from PVC coated fabric", Constr. Build. Mater., 50, 74-81, https://doi.org/10.1016/j.conbuildmat.2013.08.060.
  2. Asadi, H., Uhlemann, J., Stranghoener, N. and Ulbricht, M. (2022), "Tensile strength deterioration of PVC coated PET woven fabrics under single and multiplied artificial weathering impacts and cyclic loading", Constr. Build. Mater., 342, 127843. https://doi.org/10.1016/j.conbuildmat.2022.127843.
  3. Cozar, I., Arbelaez-Toro, J., Maimi, P., Otero, F., Gonzalez, E. and Turon, A. (2024), "A novel methodology to measure the transverse Poisson's ratio in the elastic and plastic regions for composite materials", Compos. Part B: Eng., 272, 111098. https://doi.org/10.1016/j.compositesb.2023.111098.
  4. De Baere, I., Van Paepegem, W., Degrieck, J., Sol, H., Van Hemelrijck, D. and Petreli. A. (2007), "Comparison of different identification techniques for measurement of quasi-zero Poisson's ratio of fabric-reinforced laminates", Compos. Part A: Appl. Sci. Manuf., 38, 2047-2054, https://doi.org/10.1016/j.compositesa.2007.04.012.
  5. Ezazshahabi, N. and Hosseini Varkiyani, S.M. (2020), "A review on the Poisson's ratio of fabrics", J. Textile Polym., 8, 53-63.
  6. Gao, C., Chen, W., Shi, T., Hu, J. and Qiu, Z. (2019), "Response surface characterization for biaxial tensile properties of envelope fabrics under multiple stress ratios", Compos. Struct., 230, 111482. https://doi.org/10.1016/j.compstruct.2019.111482.
  7. Giovanni, C., Yorgos, S., Michelangelo, S., Antonio, R. and Sergio, S. (2021), "Energy performance of PVC-Coated polyester fabric as novel material for the building envelope: Model validation and a refurbishment case study", J. Build. Eng., 41, 102437. https://doi.org/10.1016/j.jobe.2021.102437.
  8. Hu, J., Chen, W., Qu, Y. and Yang, D. (2020b), "Safety and serviceability of membrane buildings: A critical review on architectural, material and structural performance", Eng. Struct., 210, 110292. https://doi.org/10.1016/j.engstruct.2020.110292.
  9. Hu, J., Chen, W., Ren, S., Zhang, S., Qu, Y. and Yin, Y. (2020a), "Building performance monitoring and analysis of a large-span aerogel-membrane airport terminal", Eng. Struct., 219, 110837. https://doi.org/10.1016/j.engstruct.2020.110837.
  10. Hu, J., Gao, C., He, S., Chen, W., Li, Y. and Shi, T. (2017), "Effects of on-axis and off-axis tension on uniaxial mechanical properties of plain woven fabrics for inflated structures", Compos. Struct., 171, 92-99. https://doi.org/10.1016/j.compstruct.2017.02.009.
  11. Hursa, A., Rolich, T. and Razic, S.E. (2009), "Determining pseudo Poisson's ratio of woven fabric with a digital image correlation method", Textile Res. J., 79, 1588-1598. https://doi.org/10.1177/0040517509104316.
  12. Jalalian Karazmoudeh, F., Ezazshahabi, N. and Hosseini Varkiyani, S.M. (2023), "Investigation of the Poisson's ratio of spunbonded nonwovens considering loading direction", Fib. Polym., 24, 1-17. https://doi.org/10.1007/s12221-023-00205-9.
  13. Kraft, S.M. and Gordon, A.P. (2011), "Characterization of the tensile behavior of a metallic fiber woven structure", Textile Res. J., 81, 0040517511398944. https://doi.org/10.1177/0040517511398.
  14. Li, Y., Liu, T., Yang, B., Zhang, Q. and Zhang, Y. (2016), "Effects of natural ageing on mechanical properties of PVDF-coated fabrics", Struct. Eng. Int., 26, 348-356. https://doi.org/10.2749/101686616X14555429843843.
  15. Llorens, J. (2015), Fabric Structures in Architecture, Woodhead Publishing, Sawston, Cambridge.
  16. Muktar, S., Yordan, K., Kathrin, P., Stefan, R. and Abera, K. (2022), "Effect of ultrasonic welding process parameters on seam strength of PVC-coated hybrid textiles for weather protection", J. Indus. Textile., 51, 2960S-3003S. https://doi.org/10.1177/15280837211057579.
  17. Ohsaki, M., Fujiwara, J. and Takeda, F. (2020), "Approximate cutting pattern optimization of frame-supported and pneumatic membrane structures", Int. J. Mech. Mater. Des., 16, 1-14. https://doi.org/10.1007/s10999-020-09492-z.
  18. Penko, T. and Gersak, J. (2016), "Strip quadratic method for determining the Poisson's ratio of woven fabrics", Textile Res. J., 86, 86-96. https://doi.org/10.1177/004051751558158.
  19. Pritchard, R.H., Lava, P., Debruyne, D. and Terentjev, E.M. (2013), "Precise determination of the Poisson ratio in soft materials with 2D digital image correlation", Soft Matt., 9, 6037-6045. https://doi.org/10.1039/C3SM50901J.
  20. Qingshan, Y., Feixin, C., Yukio, T., Tian, L. and Bowen, Y. (2024), "Fluid-structure interaction behaviors of tension membrane roofs by fully-coupled numerical simulation", J. Wind Eng. Indus. Aerodyn., 244, 105609. https://doi.org/10.1016/j.jweia.2023.105609.
  21. Razbin, M., Jeddi, A.A.A., Semnani, D. and Ramzanpoor, M. (2022), "A generalized method of measuring the Poisson's ratio of warp knitted fabrics under uniaxial loading based on image processing technique.", J. Textile Inst., 113, 70-79. https://doi.org/10.1080/00405000.2020.1863568.
  22. Rijin, H., Xiaoying, S., Yue, W., Guowen, T. and Valter, C. (2021), "Biaxial tearing properties of woven coated fabrics using digital image correlation", Compos. Struct., 272, 114206. https://doi.org/10.1016/j.compstruct.2021.114206.
  23. Shukla, S. and Behera, B.K. (2022), "Comparative analysis of Poisson's ratio of 2D woven constructions and their composites produced from different auxetic geometries", Polym. Compos., 44, 1636-1647. https://doi.org/10.1002/pc.27193.
  24. Sun, X., He, R. and Wu, Y. (2018), "Numerical simulation of snowdrift on a membrane roof and the mechanical performance under snow loads", Cold Reg. Sci. Technol., 150, 15-24. https://doi.org/10.1016/j.coldregions.2017.09.007.
  25. Sutton, M.A., Orteu, J.J. and Schreier, H. (2009), Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, Springer Science & Business Media, Springer New York, NY.
  26. Tung, S.H., Shih, M.H. and Kuo, J.C. (2010), "Application of digital image correlation for anisotropic plastic deformation during tension testing", Optic. Laser. Eng., 48, 636-641. https://doi.org/10.1016/j.optlaseng.2009.09.011.
  27. Uematsu, Y., Yambe, T. and Ikeda, H. (2023), "Experimental study of wind-induced dynamic response and collapse of a mechanically-attached membrane roofing system installed on metal substrate of flat-roofed low-rise steel building", J. Build. Eng., 63, 105401. https://doi.org/10.1016/j.jobe.2022.105401.
  28. VIC-2D Correlated Solutions, https://www.correlatedsolutions.com/vic-2d.
  29. Xu, D., Cerbu, C., Wang, H. and Rosca, I.C. (2019), "Analysis of the hybrid composite materials reinforced with natural fibers considering digital image correlation (DIC) measurements", Mech. Mater.s, 135, 46-56. https://doi.org/10.1016/j.mechmat.2019.05.001.
  30. Xu, J., Zhang, Y., Wu, M. and Zhao, Y. (2019), "Experimental analysis of off-axis mechanical behaviors of PVC coated fabrics subjected to cyclic loading", Polym. Test., 80, 106090. https://doi.org/10.1016/j.polymertesting.2019.106090.
  31. Yang, Y., Qian, S., Gong, J. and Qiu. G. (2019), "Design method for precise-forming of air-supported structures considering weld seams", Thin Wall. Struct., 145, 106397. https://doi.org/10.1016/j.tws.2019.106397.
  32. Yang, Y., Zhenggang, C. and Ying, S. (2021), "Mechanical properties of four types of PVC-coated woven fabrics at high-temperature and after exposure to high-temperature", Struct., 33, 830-840. https://doi.org/10.1016/j.istruc.2021.04.036.