DOI QR코드

DOI QR Code

Forced vibrations of an elastic rectangular plate supported by a unilateral two-parameter foundation via the Chebyshev polynomials expansion

  • Zekai Celep (Department of Civil Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakif University) ;
  • Zeki Ozcan (Department of Civil Engineering, Faculty of Engineering, Sakarya University)
  • Received : 2023.09.02
  • Accepted : 2024.06.03
  • Published : 2024.06.25

Abstract

The present study deals with static and dynamic behaviors including forced vibrations of an elastic rectangular nano plate on the two-parameter foundation. Firstly, the rectangular plate is assumed to be subjected to uniformly distributed and eccentrically applied concentrated loads. The governing equations of the problem are derived by considering the dynamic response of the plate, employing a series of the Chebyshev polynomials for the displacement function and applying the Galerkin method. Then, effects of the non-essential boundary conditions of the plate, i.e., the boundary conditions related to the shearing forces, the bending moments and the corner forces, are included in the governing equation of motion to compensate for the non-satisfied boundary conditions and increase the accuracy of the Galerkin method. The approximate numerical solution is accomplished using an iterative process due to the non-linearity of the unilateral property of the two-parameter foundation. The plate under static concentrated load is investigated in detail numerically by considering a wide range of parameters of the plate and the foundation stiffnesses. Numerical treatment of the problem in the time domain is carried out by assuming a stepwise variation of the concentrated load and the linear acceleration procedure is employed in the solution of the system of governing differential equations derived from the equation of motion. Time variations of the contact region and those of the displacements of the plate are presented in the figures for various numbers of the two-parameter of the foundation, as well as the classical and nano parameters of the plate particularly focusing on the non-linearity of the problem due to the plate lift-off from the unilateral foundation. The effects of classical and nonlocal parameters and loading are investigated in detail. Definition of the separation between the plate and the two-parameter foundation is presented and applied to the given problem. The effect of the lift-off on the static and dynamic behavior of the rectangular plate is studied in detail by considering various loading conditions. The numerical study shows that the effect of nonlocal parameters on the behavior of the plate becomes significant, when nonlinearity becomes more profound, due to the lift-off of the plate. It is seen that the size effects are significant in static and dynamic analysis of nano-scaled rectangular plates and need to be included in the mechanical analyses. Furthermore, the corner displacement of the plate is affected more significantly from the lift-off, whereas it is less marked in the time variation of the middle displacement of the plate. Several numerical examples are presented to examine the sensibility of various parameters associated with nonlocal parameters of the plate and foundation. Both stiffening and softening nonlocal parameters behavior of the plate are identified in the numerical solutions which show that increasing the foundation stiffness decreases the extent of the contact region, whereas the stiffness of the shear layer increases the contact region and reduces the foundation settlement considerably.

Keywords

References

  1. Akbarov, S.D. and Kocaturk, T. (1997), "On the bending problems of anisotropic (orthotropic) plates resting on elastic foundations that react in compression only", Int. J. Solid. Struct., 34, 3673-3689. https://doi.org/10.1016/S0020-7683(96)00227-2.
  2. Aksencer, T. and Aydogdu, M. (2012), "Forced transverse vibration of nanoplates using nonlocal elasticity", Physica E, 44, 1752-1759. https://doi.org/10.1016/j.physe.2011.12.004.
  3. Amabili, M. (2016), "Do we need to satisfy natural boundary conditions in energy approach to nonlinear vibrations of rectangular plates?", Mech. Syst. Signal Pr., 189, 110-119. https://doi.org/10.1016/j.ymssp.2023.110119.
  4. Ascione, L. and Grimaldi, A. (1984), "Unilateral contact between a plate and an elastic foundation", Meccanica, 19, 223-233. https://doi.org/10.1007/BF01743736.
  5. Barretta, R., Canadija, M., Luciano, R. and de Sciarra, F.M. (2022), "On the mechanics of nanobeams on nano-foundations", Int. J. Eng. Sci., 180, 103747. https://doi.org/10.1016/j.ijengsci.2022.103747.
  6. Capurso, M. (1967), "A generalization of Wieghardt soil for two-dimensional foundation structures", Meccanica, 2, 49-54. https://doi.org/10.1007/BF02128154.
  7. Celep, Z. (1984), "Dynamic response of a circular beam on a Wieghardt-type elastic foundation", Zeitschrift fur Angewandte Mathematik und Mechanik, 64(7), 279-286. https://doi.org/10.1002/zamm.19840640707.
  8. Celep, Z. (1988a), "Circular plate on tensionless Winkler foundation", J. Eng. Mech., 114(10), 1723-1739. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1723).
  9. Celep, Z. (1988b), "Rectangular plates resting on tensionless Winkler foundation", J. Eng. Mech., 114(12), 2083-2092. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2083).
  10. Celep, Z. (1988c), "On the time-response of square plates on unilateral support", J. Sound Vib., 125(2), 305-312. https://doi.org/10.1016/0022-460X(88)90285-4.
  11. Celep, Z. (1992), "Harmonic and seismic responses of a plate-column system on a tensionless Winkler foundation", J. Sound Vib., 155(1), 47-53. https://doi.org/10.1016/0022-460X(92)90644-D.
  12. Celep, Z. and Demir, F. (2005), "Circular rigid beam on a tensionless two-parameter elastic foundation", Zeitschrift fur Angewandte Mathematik und Mechanik, 85(6), 431-439. https://doi.org/10.1002/zamm.200310183.
  13. Celep, Z. and Demir, F. (2007), "Symmetrically loaded beam on a two-parameter tensionless foundation", Struct. Eng. Mech., 27(5), 555-574. https://doi.org/10.12989/sem.2007.27.5.555.
  14. Celep, Z. and Gencoglu, M. (2003), "Forced vibrations of rigid circular plate on a tensionless Winkler edge support", J. Sound Vib., 263, 945-953. https://doi.org/10.1016/S0022-460X(02)01472-4.
  15. Celep, Z. and Gencoglu, M. (2022), "Forced vibrations of an elastic circular plate supported by unilateral edge lateral springs", Struct. Eng. Mech., 83(4), 451-463. https://doi.org/10.12989/sem.2022.83.4.451.
  16. Celep, Z. and Guler, K. (1991), "Dynamic response of a column with foundation uplift", J. Sound Vib., 149(2), 285-296. https://doi.org/10.1016/0022-460X(91)90637-Y.
  17. Celep, Z. and Guler, K. (2004), "Static and dynamic responses of a rigid circular plate on a tensionless Winkler foundation", J. Sound Vib., 276(1-2), 449-458. https://doi.org/10.1016/j.jsv.2003.10.062.
  18. Celep, Z. and Guler, K. (2007), "Axisymmetric forced vibrations of an elastic free circular plate on a tensionless two parameter foundation", J. Sound Vib., 301, 495-509. https://doi.org/10.1016/j.jsv.2006.09.029.
  19. Celep, Z. and Ozcan, Z. (2023), "Forced vibrations of an elastic rectangular plate supported by unilateral edge lateral springs", Arab. J. Sci. Eng., 48(10), 13661-13678. https://doi.org/10.1007/s13369-023-07939-x.
  20. Celep, Z. and Turhan, D. (1990), "Axisymmetric vibrations of circular plates on tensionless elastic foundations", J. Appl. Mech., 57(3), 677-681. https://doi.org/10.1115/1.2897076.
  21. Celep, Z., Guler, K. and Demir, F. (2011), "Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load", Struct. Eng. Mech., 37(1), 61-77. https://doi.org/10.12989/sem.2011.37.1.061.
  22. Celep, Z., Turhan, D. and Al-Zaid, R.Z. (1988), "Circular elastic plates on elastic unilateral edge supports", J. Appl. Mech., 55(3), 624-628. https://doi.org/10.1115/1.3125839.
  23. Celep, Z., Turhan, D. and Al-Zaid, R.Z. (1988), "Contact between a circular plate and a tensionless edge support", Int. J. Mech. Sci., 30(10), 733-741. https://doi.org/10.1016/0020-7403(88)90038-0.
  24. Cong, P.H. and Du, N.D. (2023), "Effect of nonlocal parameters and Kerr foundation on nonlinear static and dynamic stability of micro/nano plate with graphene platelet reinforcement", Thin Wall. Struct., 182, 110146. https://doi.org/10.1016/j.tws.2022.110146.
  25. Dempsey, J.P. and Li, H. (1986), "Rectangular plates on unilateral edge supports: Part 1-Theory and numerical analysis", J. Appl. Mech., 53, 146-150. https://doi.org/10.1115/1.3171702.
  26. Dempsey, J.P. and Li, H. (1986a), "Rectangular plates on unilateral edge supports: Part 2-Implementation: concentrated and uniform loading", J. Appl. Mech., 53, 151-156. https://doi.org/10.1115/1.3171703
  27. Dempsey, J.P., Keer, L.M., Patel, N.B. and Glasser, M.L. (1984), "Contact between plates and unilateral supports", J. Appl. Mech., 51, 324-328. https://doi.org/10.1115/1.3167620.
  28. Guler, K. (1998), "Free vibrations and modes of chimneys on an elastic foundation", J. Sound Vib., 218(3), 541-547. https://doi.org/10.1006/jsvi.1998.1244.
  29. Guler, K. (2004), "Circular elastic plate resting on tensionless Pasternak foundation", J. Eng. Mech., 130, 1251-1254. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1251).
  30. Guler, K. and Celep, Z. (1995), "Static and dynamic responses of a circular plate on a tensionless elastic foundation", J. Sound Vib., 183(2), 185-195. https://doi.org/10.1006/jsvi.1995.0248.
  31. Guler, K. and Celep, Z. (2005), "Response of a rectangular plate-column system on a tensionless Winkler foundation subjected to static and dynamic load", Struct. Eng. Mech., 21(6), 699-712. https://doi.org/10.12989/sem.2005.21.6.699.
  32. Hong, T., Teng, J.G. and Luo, Y.F. (1999), "Axisymmetric shells and plates on tensionless elastic foundations", Int. J. Solid. Struct., 36, 5277-5300. https://doi.org/10.1016/S0020-7683(98)00228-5.
  33. Kamiya, N. (1977), "Circular plates resting on bimodulus and notension foundation", J. Eng. Mech. Div., 103(6), 1161-1164. https://doi.org/10.1061/JMCEA3.0002303.
  34. Karami, B., Janghorban, M. and Touns, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  35. Keer, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech., 31, 491-498. https://doi.org/10.1115/1.3629667.
  36. Keer, A.D. (1976), "In the derivations of well-posed boundary value problems in structural mechanics", Int. J. Solid. Struct., 12(1), 1-11. https://doi.org/10.1016/0020-7683(76)90069-X.
  37. Keer, A.D. and Soicher, N.E. (1996), "A peculiar set of problems in linear structural mechanics", Int. J. Solid. Struct., 33(6), 899-911. https://doi.org/10.1016/0020-7683(95)00078-O.
  38. Kocaturk, T. (1995), "Rectangular anisotropic (orthotropic) plates on a tensionless elastic foundation", Mech. Compos. Mater., 31(3), 378-386. https://doi.org/10.1007/BF00615642.
  39. Koutsoumaris, C.C. and Eptaimeros, K.G. (2021), "Nonlocal integral static problems of nanobeams resting on an elastic foundation", Eur. J. Mech./A Solid., 89, 104295. https://doi.org/10.1016/j.euromechsol.2021.104295.
  40. Leissa, A.W. (1969), Vibration of Plates, NASA SP-160.
  41. Li, H. and Dempsey, J.P. (1988), "Unbonded contact of a square plate on an elastic half-space or a Winkler foundation", J. Appl. Mech., 55, 430-436. https://doi.org/10.1115/1.3173694.
  42. Mason, J.C. and Handscomb, D.C. (2002), Chebyshev Polynomials, Chapman & Hall, Boca Raton.
  43. MATLAB and Statistics Toolbox Release (2012b), The MathWorks, Inc., Natick, Massachusetts, United States.
  44. Mishra, R.C. and Chakrabarti, S.K. (1997), "Shear and attachment effects on the behavior of rectangular plates resting on tensionless elastic foundation", Eng. Struct., 9, 551-567. https://doi.org/10.1016/S0141-0296(97)00122-3.
  45. Mishra, R.C. and Chakrabarti, S.K. (1996), "Rectangular plates resting on tensionless elastic foundation: Some new results", J. Eng. Mech., 122, 287-385. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:4(385)
  46. Psycharis, I.N. (2008), "Investigation of the dynamic response of rigid footings on tensionless Winkler foundation", Soil Dyn. Earthq. Eng., 28, 577-591. https://doi.org/10.1016/j.soildyn.2007.07.010.
  47. Rabhi, M., Benrahou, K.H., Yeghnem, R., Guerroudj, H.Z., Kaci, A., Tounsi, A. and Hussain, M. (2022), "Investigating dynamic response of porous advanced composite plates resting on Winkler/Pasternak/Kerr foundations using a new quasi-3D HSDT", Struct. Eng. Mech., 83(6), 771-788. https://doi.org/10.12989/sem.2022.83.6.771.
  48. Rumpel, G. (1958), "uber das verhalten dunner platten in den eckpunkte", Bauingenieur, 33(3), 50-54.
  49. SAP2000 (1988), Integrated Software for Structural Analysis and Design V20, Computers and Structures Inc., Berkeley, California.
  50. Shen, H.S. and Yu, L. (2004), "Nonlinear bending behavior of Reissner-Mindlin plates with free edges resting on tensionless elastic foundations", Int. J. Solid. Struct., 41, 4809-4825. https://doi.org/10.1016/j.ijsolstr.2004.02.013.
  51. Shukla, S.K., Gupta, A. and Sivakugan, N. (2011), "Analysis of circular elastic plate resting on Pasternak foundation by strain energy approach", Geotech. Geol. Eng., 29, 613-618. https://doi.org/10.1007/s10706-011-9392-2.
  52. Silva, A.R.D., Silveira, R.A.M. and Goncalves, P.B. (2001), "Numerical methods for analysis of plates on tensionless elastic foundations", Int. J. Solid. Struct., 38(10-13), 2083-2100. https://doi.org/10.1016/S0020-7683(00)00154-2.
  53. Timoshenko S. and Woinowsky-Krieger S. (1959), Theory of Plates and Shells, McGraw-Hill, Auckland.
  54. Villaggio, P. (1983), "A free boundary value problem in plate theory", J. Appl. Mech., 50, 297-302. https://doi.org/10.1115/1.3167035.
  55. Wang, Y.H., Tham, L.G. and Cheung, Y.K. (2005), "Beams and plates on elastic foundations: A review", Progr. Struct. Eng. Mater., 7, 174-182. https://doi.org/10.1002/pse.202.
  56. Weitsman, Y. (1969), "On the unbounded contact between plates and an elastic half-space", J. Appl. Mech., 36, 198-202. https://doi.org/10.1115/1.3564607
  57. Weitsman, Y. (1970), "On foundations that react in compression only", J. Appl. Mech., 37, 1019-1030. https://doi.org/10.1115/1.3408653.
  58. Yu, L., Shen, H.S. and Huo, X.P. (2007), "Dynamic responses of Reissner-Mindlin plates with free edges resting on tensionless elastic foundations", J. Sound Vib., 299, 212-228. https://doi.org/10.1016/j.jsv.2006.07.015.