DOI QR코드

DOI QR Code

Basic design assessment of coexistent cage aquaculture an offshore wind farm based on numerical analysis

수치해석 기반 해상풍력단지 공존어업설비 기본설계 적정성 평가

  • Doohyun Kyung ;
  • Hoyeop Lee ;
  • Keumseok Kang ;
  • Sungmin Park ;
  • Soowon Kang ;
  • Chanjoo Kim
  • 경두현 (한국전력공사, 전력연구원) ;
  • 이호엽 (한국전력공사, 전력연구원) ;
  • 강금석 (한국전력공사, 전력연구원) ;
  • 박성민 ((주)포어시스, 기술개발1팀) ;
  • 강수원 ((주)포어시스, 기술개발1팀) ;
  • 김찬주 (인하대학교, 조선해양공학과)
  • Received : 2023.11.03
  • Accepted : 2024.03.06
  • Published : 2024.03.31

Abstract

This paper examines the design feasibility of cage aquaculture coexistent with an offshore wind farm in the southwestern sea of South Korea. Among the many types of fish farms, 2 × 3 cage aquaculture was selected for the investigation and the initial design including mooring lines, bridles, etc. was drawn with iterative numerical simulations using Orcaflex. Experimental campaigns were conducted to validate the numerical results, and they were found to be in good agreement with the experiments. Using a validated numerical model, the tension of mooring lines and the deformed volumes of the facility were examined under given operating and survival conditions. The validated model will be further used to investigate various aspects of the cage farm design for design optimization.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부의 재원으로 한국에너지기술평가원의 신재생에너지 핵심기술 개발사업(과제번호 : 20203040020130) 및 한국전력공사의 재원으로 수행된 "해상풍력 지지구조 최적화 설계기술 개발(R22EA12)" 연구 결과의 일부입니다.

References

  1. Berkenhagen, J., Doring, R., Fock, H.O., Kloppmann, M.H., Pedersen, S.A. and Schulze, T., 2010, Decision bias in marine spatial planning of offshore wind farms: problems of singular versus cumulative assessments of economic impacts on fisheries, Marine policy, 34(3), pp.733-736.
  2. Ashley, M.C., Mangi, S.C., and Rodwell, L.D., 2014, The potential of offshore windfarms to act as marine protected areas - A systematic review of current evidence, Marine Policy, 45, pp.301-309.
  3. Hooper, T. and Austen, M., 2014, The co-location of offshore windfarms and decapod fisheries in the UK: Constraints and opportunities, Marine Policy, 43, pp.295-300.
  4. Griffin, R., Buck, B. and Krause, G., 2015, Private incentives for the emergence of co-production of offshore wind energy and mussel aquaculture. Aquaculture, 436, pp.80-89.
  5. Kang, KS., Jeon, I.S., Kwak, J.Y., 2016, Possibilities and Orientation toward Co-existaence of Offshore Wind Farms, J. of Wind Energy, KWEA, pp.5-13
  6. Hooper, T., Ashley, M. and Austen, M., 2018, Capturing benefits: opportunities for the co-location of offshore energy and fisheries. In Offshore Energy and Marine Spatial Planning, pp. 189-213.
  7. Schupp, M.F., Kafas, A., Buck, B.H., Krause, G., Onyango, V., Stelzenmiiller, V., Davies, I. and Scott, B.E., 2021, Fishing within offshore wind farms in the North Sea: Stakeholder perspectives for multi-use from Scotland and Germany. Journal of Environmental Management, 279, p.111762.
  8. Stenberg, C., Christoffersen, M.O., Krog, C., Patrizio, M. and Dolmer, P., 2010, Offshore wind farms and their potential for shellfish aquaculture and restocking. ICES CM.
  9. Stelzenmiiller, V., Diekmann, R., Bastardie, F., Schulze, T., Berkenhagen, J., Kloppmann, M., Krause, G., Pogoda, B., Buck, B.H. and Kraus, G., 2016, Co-location of passive gear fisheries in offshore wind farms in the German EEZ of the North Sea- A first socio-economic scoping. Journal of Environmental Management, 183, pp.794-805.
  10. Lengkeek, W., Didderen, K, Teunis, M., Driessen, F., Coolen, J.W.P., Bos, O.G., Vergouwen, S.A., Raaijmakers, T., De Vries, M.B. and Van Koningsveld, M., 2017, Eco-friendly design of scour protection: potential enhancement of ecological functioning in offshore wind farms: Towards an implementation guide and experimental set-up (No. 17-001). Bureau Waardenburg.
  11. Xu, Z. and Qin, H, 2020, Fluid-structure interactions of cage based aquaculture- From structures to organisms. Ocean Engineering, 217, p.107961.
  12. Guo, Y.C., Mohapatra, S.C. and Soares, C.G., 2020, Review of developments in porous membranes and net-type structures for breakwaters and fish cages. Ocean Engineering, 200, p.107027.
  13. Cardia, F., Ciattaglia, A. and Comer, R.A., 2017, Guidelines and Criteria on Technical and Environmental Aspects of Cage Aquaculture Site Selection in the Kingdom of Saudi Arabia.
  14. Shuchuang Dong, Xingxing You and Fuxiang Hu., 2020, Effects of design factors on drag forces and deformations on marine aquaculture cages: A parametric study based on numerical Simulations, Journal of Marine Science and Engineering., 8(2), 125
  15. Hao Chen and Erik Damgaard Christensen., 2017, Development of a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage, Ocean Engineering, pp.597-615.
  16. Francois, M., Davies, P., 2000. Fiber rope deep water mooring: a practical model for the analysis of polyester mooring system. Rio Oil and Gas Conference, IBP24700, Rio de Janeiro, Brazil, 16-19 October 2000, pp.1-10
  17. The application of fiber rope for offshore mooring, ABS Guidance notes, 2021
  18. Ministry of Oceans and Fisheries, 2019, National Deep water design wave report (in Korean)
  19. Huang, C.C., Tang, H.J. and Liu, J.Y., 2008, Effects of waves and currents on gravity-type cages in the open sea. Aquacultural Engineering, 38(2), pp. 105-116.