DOI QR코드

DOI QR Code

Role of TGF-β1/SMADs signalling pathway in resveratrol-induced reduction of extracellular matrix deposition by dexamethasone-treated human trabecular meshwork cells

  • Amy Suzana Abu Bakar (Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM)) ;
  • Norhafiza Razali (Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM)) ;
  • Renu Agarwal (School of Medicine, International Medical University (IMU)) ;
  • Igor Iezhitsa (School of Medicine, International Medical University (IMU)) ;
  • Maxim A. Perfilev (Research Center of Innovative Medicines, Volgograd State Medical University) ;
  • Pavel M. Vassiliev (Research Center of Innovative Medicines, Volgograd State Medical University)
  • Received : 2023.05.24
  • Accepted : 2024.02.03
  • Published : 2024.07.01

Abstract

Deposition of extracellular matrix (ECM) in the trabecular meshwork (TM) increases aqueous humour outflow resistance leading to elevation of intraocular pressure (IOP) in primary open-angle glaucoma, which remains the only modifiable risk factor. Resveratrol has been shown to counteract the steroid-induced increase in IOP and increase the TM expression of ECM proteolytic enzymes; however, its effects on the deposition of ECM components by TM and its associated pathways, such as TGF-β-SMAD signalling remain uncertain. This study, therefore, explored the effects of trans-resveratrol on the expression of ECM components, SMAD signalling molecules, plasminogen activator inhibitor-1 and tissue plasminogen activator in dexamethasone-treated human TM cells (HTMCs). We also studied the nature of molecular interaction of trans-resveratrol with SMAD4 domains using ensemble docking. Treatment of HTMCs with 12.5 µM trans-resveratrol downregulated the dexamethasone-induced increase in collagen, fibronectin and α-smooth muscle actin at gene and protein levels through downregulation of TGF-β1, SMAD4, and upregulation of SMAD7. Downregulation of TGF-β1 signalling by trans-resveratrol could be attributed to its effect on the transcriptional activity due to high affinity for the MH2 domain of SMAD4. These effects may contribute to resveratrol's IOP-lowering properties by reducing ECM deposition and enhancing aqueous humour outflow in the TM.

Keywords

Acknowledgement

We would like to acknowledge the Institute of Medical Molecular Biotechnology (IMMB) Universiti Teknologi MARA for the facility support during the study.

References

  1. Wordinger RJ, Clark AF. Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma. Prog Retin Eye Res. 1999;18:629-667. 
  2. Fini ME, Schwartz SG, Gao X, Jeong S, Patel N, Itakura T, Price MO, Price FW Jr, Varma R, Stamer WD. Steroid-induced ocular hypertension/glaucoma: focus on pharmacogenomics and implications for precision medicine. Prog Retin Eye Res. 2017;56:58-83. 
  3. Agarwal R, Agarwal P. Rodent models of glaucoma and their applicability for drug discovery. Expert Opin Drug Discov. 2017;12:261-270.
  4. Overby DR, Clark AF. Animal models of glucocorticoid-induced glaucoma. Exp Eye Res. 2015;141:15-22. 
  5. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195-4200.
  6. Tektas OY, Lutjen-Drecoll E, Scholz M. Qualitative and quantitative morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG. Invest Ophthalmol Vis Sci. 2010;51:5083-5091.
  7. Vranka JA, Kelley MJ, Acott TS, Keller KE. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res. 2015;133:112-125.
  8. Stamer WD, Acott TS. Current understanding of conventional outflow dysfunction in glaucoma. Curr Opin Ophthalmol. 2012;23:135-143.
  9. Agarwal P, Daher AM, Agarwal R. Aqueous humor TGF-β2 levels in patients with open-angle glaucoma: a meta-analysis. Mol Vis. 2015;21:612-620.
  10. Danias J, Gerometta R, Ge Y, Ren L, Panagis L, Mittag TW, Candia OA, Podos SM. Gene expression changes in steroid-induced IOP elevation in bovine trabecular meshwork. Invest Ophthalmol Vis Sci. 2011;52:8636-8645.
  11. Liton PB, Li G, Luna C, Gonzalez P, Epstein DL. Cross-talk between TGF-beta1 and IL-6 in human trabecular meshwork cells. Mol Vis. 2009;15:326-334.
  12. Schlotzer-Schrehardt U, Zenkel M, Kuchle M, Sakai LY, Naumann GO. Role of transforming growth factor-beta1 and its latent form binding protein in pseudoexfoliation syndrome. Exp Eye Res. 2001;73:765-780.
  13. Igarashi N, Honjo M, Asaoka R, Kurano M, Yatomi Y, Igarashi K, Miyata K, Kaburaki T, Aihara M. Aqueous autotaxin and TGF-βs are promising diagnostic biomarkers for distinguishing open-angle glaucoma subtypes. Sci Rep. 2021;11:1408.
  14. Fuchshofer R, Welge-Lussen U, Lutjen-Drecoll E. The effect of TGF-beta2 on human trabecular meshwork extracellular proteolytic system. Exp Eye Res. 2003;77:757-765. 
  15. Schacke W, Beck KF, Pfeilschifter J, Koch F, Hattenbach LO. Modulation of tissue plasminogen activator and plasminogen activator inhibitor-1 by transforming growth factor-beta in human retinal glial cells. Invest Ophthalmol Vis Sci. 2002;43:2799-2805.
  16. Wang J, Harris A, Prendes MA, Alshawa L, Gross JC, Wentz SM, Rao AB, Kim NJ, Synder A, Siesky B. Targeting transforming growth factor-β signaling in primary open-angle glaucoma. J Glaucoma. 2017;26:390-395. 
  17. Ma Z, Sheng L, Li J, Qian J, Wu G, Wang Z, Zhang Y. Resveratrol alleviates hepatic fibrosis in associated with decreased endoplasmic reticulum stress-mediated apoptosis and inflammation. Inflammation. 2022;45:812-823.
  18. Schlotterose L, Cossais F, Lucius R, Hattermann K. Breaking the circulus vitiosus of neuroinflammation: Resveratrol attenuates the human glial cell response to cytokines. Biomed Pharmacother. 2023;163:114814. 
  19. Raj P, Thandapilly SJ, Wigle J, Zieroth S, Netticadan T. A comprehensive analysis of the efficacy of resveratrol in atherosclerotic cardiovascular disease, myocardial infarction and heart failure. Molecules. 2021;26:6600. 
  20. Razali N, Agarwal R, Agarwal P, Froemming GRA, Tripathy M, Ismail NM. IOP lowering effect of topical trans-resveratrol involves adenosine receptors and TGF-β2 signaling pathways. Eur J Pharmacol. 2018;838:1-10.
  21. Razali N, Agarwal R, Agarwal P, Tripathy M, Kapitonova MY, Kutty MK, Smirnov A, Khalid Z, Ismail NM. Topical trans-resveratrol ameliorates steroid-induced anterior and posterior segment changes in rats. Exp Eye Res. 2016;143:9-16. 
  22. Razali N, Agarwal R, Agarwal P, Kumar S, Tripathy M, Vasudevan S, Crowston JG, Ismail NM. Role of adenosine receptors in resveratrol-induced intraocular pressure lowering in rats with steroid-induced ocular hypertension. Clin Exp Ophthalmol. 2015;43:54-66. 
  23. Mohd Nasir NA, Agarwal R, Krasilnikova A, Sheikh Abdul Kadir SH, Iezhitsa I. Effect of trans-resveratrol on dexamethasone-induced changes in the expression of MMPs by human trabecular meshwork cells: involvement of adenosine A1 receptors and NFkB. Eur J Pharmacol. 2020;887:173431.
  24. Tsuchida K, Zhu Y, Siva S, Dunn SR, Sharma K. Role of Smad4 on TGF-beta-induced extracellular matrix stimulation in mesangial cells. Kidney Int. 2003;63:2000-2009.
  25. Mohd Nasir NA, Agarwal R, Krasilnikova A, Kadir SHA, Iezhitsa I, Radzi ABBM, Hamdan FB, Ismail NM. The effect of trans-resveratrol on the viability of human trabecular meshwork cells. Res J Pharm Biol Chem Sci. 2017;8:88-95. 
  26. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611-622. 
  27. Du X, Pan Z, Li Q, Liu H, Li Q. SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis. Cell Death Dis. 2018;9:151.
  28. Vasiliev PM, Kochetkov AN, Spasov AA, Perfiliev MA. The energy spectrum of multiple docking as a multi-dimensional metric of the affinity of chemical compounds to pharmacologically relevant biotargets. Volgogr J Med Res. 2021;3:57-61. 
  29. Vassiliev PM, Spasov AA, Yanaliyeva LR, Kochetkov AN, Vorfolomeyeva VV, Klochkov VG, Appazova DT. [Neural network modeling of multitarget RAGE inhibitory activity]. Biomed Khim. 2019;65:91-98. Russian.
  30. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455-461.
  31. Massague J, Chen YG. Controlling TGF-B signaling. Genes Dev. 2000;14:627-644. 
  32. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778-2786. 
  33. Avotri S, Eatman D, Russell-Randall K. Effects of resveratrol on inflammatory biomarkers in glaucomatous human trabecular meshwork cells. Nutrients. 2019;11:984.
  34. Kasetti RB, Maddineni P, Millar JC, Clark AF, Zode GS. Increased synthesis and deposition of extracellular matrix proteins leads to endoplasmic reticulum stress in the trabecular meshwork. Sci Rep. 2017;7:14951.
  35. Hassan NSA, Bakry NA, Agarwal R, Krasilnikova A, Kadir SHSA, Iezhitsa I, Ismail NM. The effect of dexamethasone on synthesis of collagen, fibronectin and α-smooth muscle actin in cultured human trabecular meshwork cells. Indian J Physiol Pharmacol. 2016;60:352-363. 
  36. Zhou L, Li Y, Yue BY. Glucocorticoid effects on extracellular matrix proteins and integrins in bovine trabecular meshwork cells in relation to glaucoma. Int J Mol Med. 1998;1:339-346.
  37. Raghunathan VK, Morgan JT, Park SA, Weber D, Phinney BS, Murphy CJ, Russell P. Dexamethasone stiffens trabecular meshwork, trabecular meshwork cells, and matrix. Invest Ophthalmol Vis Sci. 2015;56:4447-4459. 
  38. Chen YX, Wang Y, Fu CC, Diao F, Song LN, Li ZB, Yang R, Lu J. Dexamethasone enhances cell resistance to chemotherapy by increasing adhesion to extracellular matrix in human ovarian cancer cells. Endocr Relat Cancer. 2010;17:39-50.
  39. Shannon S, Vaca C, Jia D, Entersz I, Schaer A, Carcione J, Weaver M, Avidar Y, Pettit R, Nair M, Khan A, Foty RA. Dexamethasone-mediated activation of fibronectin matrix assembly reduces dispersal of primary human glioblastoma cells. PLoS One. 2015;10:e0135951.
  40. Peng J, Wang H, Wang X, Sun M, Deng S, Wang Y. YAP and TAZ mediate steroid-induced alterations in the trabecular meshwork cytoskeleton in human trabecular meshwork cells. Int J Mol Med. 2018;41:164-172. 
  41. Zhang X, Ognibene CM, Clark AF, Yorio T. Dexamethasone inhibition of trabecular meshwork cell phagocytosis and its modulation by glucocorticoid receptor beta. Exp Eye Res. 2007;84:275-284.
  42. Honjo M, Igarashi N, Nishida J, Kurano M, Yatomi Y, Igarashi K, Kano K, Aoki J, Aihara M. Role of the autotaxin-LPA pathway in dexamethasone-induced fibrotic responses and extracellular matrix production in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2018;59:21-30. 
  43. Zeng G, Zhong F, Li J, Luo S, Zhang P. Resveratrol-mediated reduction of collagen by inhibiting proliferation and producing apoptosis in human hypertrophic scar fibroblasts. Biosci Biotechnol Biochem. 2013;77:2389-2396.
  44. Gharaee-Kermani M, Moore BB, Macoska JA. Resveratrol-mediated repression and reversion of prostatic myofibroblast phenoconversion. PLoS One. 2016;11:e0158357.
  45. Wu CH, Shieh TM, Wei LH, Cheng TF, Chen HY, Huang TC, Wang KL, Hsia SM. Resveratrol inhibits proliferation of myometrial and leiomyoma cells and decreases extracellular matrix-associated protein expression. J Funct Foods. 2016;23:241-252. 
  46. Zhang Y, Lu Y, Ong'achwa MJ, Ge L, Qian Y, Chen L, Hu X, Li F, Wei H, Zhang C, Li C, Wang Z. Resveratrol inhibits the TGF-β1-induced proliferation of cardiac fibroblasts and collagen secretion by downregulating miR-17 in rat. Biomed Res Int. 2018;2018:8730593. 
  47. Zhang X, Lu H, Xie S, Wu C, Guo Y, Xiao Y, Zheng S, Zhu H, Zhang Y, Bai Y. Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in kidneys via proliferation-related signalling pathways. Br J Pharmacol. 2019;176:4745-4759. 
  48. Wei G, Chen X, Wang G, Fan L, Wang K, Li X. Effect of resveratrol on the prevention of intra-abdominal adhesion formation in a rat model. Cell Physiol Biochem. 2016;39:33-46. 
  49. Hong SW, Jung KH, Zheng HM, Lee HS, Suh JK, Park IS, Lee DH, Hong SS. The protective effect of resveratrol on dimethylnitrosamine-induced liver fibrosis in rats. Arch Pharm Res. 2010;33:601-609. 
  50. Garcia P, Schmiedlin-Ren P, Mathias JS, Tang H, Christman GM, Zimmermann EM. Resveratrol causes cell cycle arrest, decreased collagen synthesis, and apoptosis in rat intestinal smooth muscle cells. Am J Physiol Gastrointest Liver Physiol. 2012;302:G326-G335.
  51. Li P, Liang ML, Zhu Y, Gong YY, Wang Y, Heng D, Lin L. Resveratrol inhibits collagen I synthesis by suppressing IGF-1R activation in intestinal fibroblasts. World J Gastroenterol. 2014;20:4648-4661. 
  52. Bai Y, Lu H, Wu C, Liang Y, Wang S, Lin C, Chen B, Xia P. Resveratrol inhibits epithelial-mesenchymal transition and renal fibrosis by antagonizing the hedgehog signaling pathway. Biochem Pharmacol. 2014;92:484-493. Erratum in: Biochem Pharmacol. 2022;198:114937. 
  53. Royce SG, Dang W, Yuan G, Tran J, El Osta A, Karagiannis TC, Tang ML. Resveratrol has protective effects against airway remodeling and airway hyperreactivity in a murine model of allergic airways disease. Pathobiol Aging Age Relat Dis. 2011;1.
  54. Tsang SW, Zhang H, Lin Z, Mu H, Bian ZX. Anti-fibrotic effect of trans-resveratrol on pancreatic stellate cells. Biomed Pharmacother. 2015;71:91-97.
  55. AyanlarBatuman O, Ferrero AP, Diaz A, Jimenez SA. Regulation of transforming growth factor-beta 1 gene expression by glucocorticoids in normal human T lymphocytes. J Clin Invest. 1991;88:1574-1580. 
  56. Gong Q, Yin J, Wang M, He L, Lei F, Luo Y, Yang S, Feng Y, Li J, Du L. Comprehensive study of dexamethasone on albumin biogenesis during normal and pathological renal conditions. Pharm Biol. 2020;58:1252-1262.
  57. Feng XL, Fei HZ, Hu L. Dexamethasone induced apoptosis of A549 cells via the TGF-β1/Smad2 pathway. Oncol Lett. 2018;15:2801-2806.
  58. Kasetti RB, Maddineni P, Patel PD, Searby C, Sheffield VC, Zode GS. Transforming growth factor β2 (TGFβ2) signaling plays a key role in glucocorticoid-induced ocular hypertension. J Biol Chem. 2018;293:9854-9868.
  59. Mukudai S, Hiwatashi N, Bing R, Garabedian M, Branski RC. Phosphorylation of the glucocorticoid receptor alters SMAD signaling in vocal fold fibroblasts. Laryngoscope. 2019;129:E187-E193.
  60. Robertson IB, Rifkin DB. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb Perspect Biol. 2016;8:a021907.
  61. Tian Z, Greene AS, Pietrusz JL, Matus IR, Liang M. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 2008;18:404-411.
  62. Tili E, Michaille JJ, Adair B, Alder H, Limagne E, Taccioli C, Ferracin M, Delmas D, Latruffe N, Croce CM. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis. 2010;31:1561-1566. 
  63. Hata A, Chen YG. TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol. 2016;8:a022061.
  64. Zhai XX, Ding JC, Tang ZM. Resveratrol inhibits proliferation and induces apoptosis of pathological scar fibroblasts through the mechanism involving TGF-β1/Smads signaling pathway. Cell Biochem Biophys. 2015;71:1267-1272. 
  65. Wang J, He F, Chen L, Li Q, Jin S, Zheng H, Lin J, Zhang H, Ma S, Mei J, Yu J. Resveratrol inhibits pulmonary fibrosis by regulating miR-21 through MAPK/AP-1 pathways. Biomed Pharmacother. 2018;105:37-44. 
  66. Kimura H, Li X, Torii K, Okada T, Kamiyama K, Mikami D, Kasuno K, Takahashi N, Yoshida H. Glucocorticoid enhances hypoxia- and/or transforming growth factor-β-induced plasminogen activator inhibitor-1 production in human proximal renal tubular cells. Clin Exp Nephrol. 2011;15:34-40.
  67. Mutch NJ. The role of platelets in fibrinolysis. In: Michelson A, editor. Platelets. 3rd ed. Elsevier Inc.; 2013. p.469-485.
  68. Olholm J, Paulsen SK, Cullberg KB, Richelsen B, Pedersen SB. Anti-inflammatory effect of resveratrol on adipokine expression and secretion in human adipose tissue explants. Int J Obes (Lond). 2010;34:1546-1553.
  69. Zagotta I, Dimova EY, Funcke JB, Wabitsch M, Kietzmann T, Fischer-Posovszky P. Resveratrol suppresses PAI-1 gene expression in a human in vitro model of inflamed adipose tissue. Oxid Med Cell Longev. 2013;2013:793525.