DOI QR코드

DOI QR Code

Prediction of form demolding strength of concrete mixed with non-sintered hwangto using ultrasonic pulse velocity method

초음파 속도법에 의한 비소성 황토를 혼합한 콘크리트의 거푸집 탈형강도 예측

  • Nam, Young-Jin (Department of Fire and Disaster Prevention, Semyung University) ;
  • Kim, Won-Chang (Department of Fire and Disaster Prevention, Semyung University) ;
  • Choi, Hyeong-Gil (School of Architecture, Kyungpook National University) ;
  • Lee, Tae-Gyu (Department of Fire and Disaster Prevention, Semyung University)
  • Received : 2024.04.11
  • Accepted : 2024.06.05
  • Published : 2024.06.30

Abstract

This study presented a trend equation derived from regression analysis of compressive strength and ultrasonic velocity to predict the form demolding time for concrete mixed with Non-sintered Hwangto (NHT) at various replacement rates. The experimental results showed that compressive strength decreased as the NHT substitution ratio increased. Regarding ultrasonic speed, the speed difference widened as age increased until one day old but decreased when measured up to 28 days. Regression analysis revealed that plain concrete had a lower ultrasonic velocity than HC at the same compressive strength. Additionally, plain concrete reached the time for vertical, single-layer, and multi-layer horizontal form demolding faster than HC. An error test comparing the trend formula from this study with previous studies showed that this empirical formula had an average error value close to zero, indicating high reliability for predicting demolding time.

Keywords

Acknowledgement

이 연구는 2024년도 한국연구재단 ICT 초음파 분석기법을 활용한 철근콘크리트 구조물의 화재손상 정량화 평가 모델 개발 연구비 지원에 의한 결과의 일부임. 과제번호: 2022R1F1A1073333 이 연구는 2024년도 중소기업기술정보진흥원 하천/호수 수질 개선을 위한 녹색전환형 저탄소 결합재 기반 조립식 생태여울둑 실용화 기술 개발 연구비 지원에 의한 결과의 일부임. 과제번호: S3270705

References

  1. Axel, M., Li, X., Wen, F., An, M. (2023). Microstructure and Strength Parameters of Cement-Stabilized Loess. Geotechnics, 3(2), doi.org/10.3390/geotechnics3020010 
  2. ACI 347-04. (2005). Guide to formwork for concrete. MI: American Concrete Institute Committee, 9-16. 
  3. Akashi, T. (1988). Studies on nondestructive testings of concrete. Doboku Gakkai Ronbunshu, 1998(390), 1-22, doi:10.2208/jscej.1988.390_1 
  4. BS EN 13670:2009. (2010). Execution of concrete structures. London(United Kingdom): European Committee for Standardization(CEN), British Standards Institute (BSI), 24-28. 
  5. EN 16757:2016. (2016). Sustainability of Construction Works-Environmental Product Declarations-Product Category Rules for Concrete and Concrete Elements. Annex BB (Informative). CO2 Uptake by Carbonation-Guidance on Calculation; European Committee for Standardization(CEN): Brussels, Belgium, 48-52. 
  6. Fanglong, S., Fuwei, W., Zhen, L., Yanan, W., Shijie, L., Tongshuo, B., Yi, W., Hui, G., & Shuijin, H. (2020). Predominant role of soil moisture in regulating the response of ecosystem carbon fluxes to global change factors in a semi-arid grassland on the Loess Plateau. Science of The Total Environment, 738, doi:10.1016/j.scitotenv.2020.139746 
  7. Francois, A., & Karen, S. (2018). Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3). Cement and Concrete Research, 107, 124-135, doi:10.1016/j.cemconres.2018.02.016 
  8. JASS 5. (2009). Japanese architectural standard specification. Tokyo (Japan): Architectural Institute of Japan, 74-77. 
  9. Kim, W. C., & Lee, T. G. (2023). A Study to Improve the Reliability of High-Strength Concrete Strength Evaluation Using an Ultrasonic Velocity Method. Materials, 16(20), doi:10.3390/ma16206800 
  10. KASS 5. (2009). Korea architectural standard specification reinforced concrete work. Seoul (Korea): Architectural Institute of Korea, 93-95. 
  11. Kim, M. H., Choi, S. J., Kim, Y. R., Jang, J. H., Kim, J. H., & Yoon, J. K. (2004). A Study on the proposal of strength presumption equation and evaluation of practical application of high strength concrete by non-destructive test. Journal of the Architectural Institute of Korea Structure & Construction, 20(2), 55-62. 
  12. Im, H. J., Kim, W. C., Choi, H. G., & Lee. T, G. (2024). Strength Prediction of Non-Sintered Hwangto-Substituted Concrete Using the Ultrasonic Velocity Method. Materials, 17(1), doi:10.3390/ma17010174 
  13. Lee, H. S., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., ... & Park, Y. J. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Core Writing Team, H. Lee & J. Romero (eds.)]. IPCC, Geneva, Switzerland, 1-34, doi:10.59327/IPCC/AR6-9789291691647.001 
  14. Lee, J. H., Lee, T. G., Choi, H. G., & Lee, D. E. (2020). Assessment of Optimum CaO Content Range for High Volume FA Based Concrete Considering Durability Properties. Applied Sciences, 10(19), doi:10.3390/app10196944 
  15. Lee, T. G., Lee, J. H., & Choi, H. G. (2020). Assessment of Strength Development at Hardened Stage on High-Strength Concrete Using NDT. Applied Sciences, 10(18), doi:10.3390/app10186261 
  16. Nam, Y. J., Jeong, K. S., Kim, W. C., Choi, H. G., & Lee, T. G. (2023). Evaluation on Early Strength Development of Concrete Mixed with Non-Sintered Hwangto Using Ultrasonic Pulse Velocity. Materials, 16(21), doi:10.3390/ma16216850 
  17. Pyszniak, J. (1968). Method of concrete strength control, in prefabricated slabs, by ultrasound. Building Science, 2(4), 331-335, doi:10.1016/0007-3628(68)90013-3 
  18. Soheil, P., & Toufigh, V. (2023). Fire-induced damage assessment of cementless alkali-activated slag-based concrete. Construction and Building Materials, 393:132002, doi:10.1016/j.conbuildmat.2023.132002 
  19. Weibo, R., Xu, J., & Bai, E. (2016). Strength and ultrasonic characteristics of alkali-activated fly ash-slag geopolymer concrete after exposure to elevated temperatures. Journal of Materials in Civil Engineering, 28(2), https://api.semanticscholar.org/CorpusID:137234180