DOI QR코드

DOI QR Code

A Systematic Literature Review on Sensing Architecture Integrating Physiological Signals and AI

생체 데이터와 AI의 통합을 활용한 감성 건축 : 감성 건축의 연구 경향 분석

  • Cho, Ju-Eun (Dept. of Architectural Engineering, Hanyang University) ;
  • Hong, Yi-Yeon (Dept. of Architectural Engineering, Hanyang University) ;
  • Jun, Han-Jong (Dept. of Architectural Engineering, Hanyang University)
  • Received : 2024.03.27
  • Accepted : 2024.05.22
  • Published : 2024.06.30

Abstract

The research explores how physiological signals and AI can be integrated into architecture to create sensing architecture. The research aims to explore the potential for creating more responsive and user-centric architectural environments by utilizing physiological signals such as EEG (Electroencephalography), EDA (Electrodermal Activity), ECG (Electrocardiography), EMG (Electromyography), and Eye-Tracking, alongside advanced AI technologies. This paper conducts a systematic literature review following PRISMA guidelines to analyze thirty-five scientific articles, aiming to explore current and future applications of AI and physiological signals in architectural design and user interaction. By combining AI and physiological signals, architects will be able to create buildings that adapt to and reflect users' emotional states and needs. Additionally, this integration is seen as a crucial factor in achieving sustainable and personalized architectural solutions, representing a significant shift towards environments that prioritize environmental sustainability. The expected impact of these technological advances indicates a shift in architectural design practices towards creating spaces that engage with and adapt to its users, leading to a new frontier in emotional architecture.

Keywords

Acknowledgement

이 연구는 2022년도 한국연구재단 연구비 지원에 의한 결과의 일부임. 과제번호:2022R1A2C3011796

References

  1. Al-Nafjan, A., Hosny, M., Al-Ohali, Y., & Al-Wabil, A. (2017). Review and classification of emotion recognition based on EEG brain-computer interface system research: A systematic review. Applied Sciences, 7(12), 1239.
  2. Ari, B., Siddique, K., Alcin, O. F., Aslan, M., Sengur, A., & Mehmood, R. M. (2022). Wavelet ELM-AE Based Data Augmentation and Deep Learning for Efficient Emotion Re cognition Using EEG Recordings. IEEE Access, 10, 72171-72181. https://doi.org/10.1109/ACCESS.2022.3181887
  3. Arias Sarah, P., Hall, L., Saitovitch, A., Aucouturier, J. J., Zilbovicius, M., & Johansson, P. (2023). Pupil dilation reflects the dynamic integration of audiovisual emotional speech. Scientific Reports, 13(1), 5507.
  4. Bogdanova, O. V., Bogdanov, V. B., Miller, L. E., & Hadj-Bouziane, F. (2022). Simulated proximity enhances perceptual and physiological responses to emotional facial expressions. Scientific Reports, 12(1), Article 1.
  5. Campbell, E., Phinyomark, A., & Scheme, E. (2019). Feature extraction and selection for pain recognition using peripheral physiological signals. Frontiers in Neuroscience, 13, 437.
  6. Cesar Cavalcanti Roza, V., & Adrian Postolache, O. (2019). Multimodal approach for emotion recognition based on simulated flight experiments. Sensors, 19(24), 5516.
  7. Chen, W. (2018, February 10-11). Architectural style analysis method based on intelligent computing technology[Paper presentation]. 2018 10th International Conference on Measuring Technology and Mechatronics Automation(ICMTMA), Los Alamitos, CA, United States.
  8. Cho, M. E., & Kim, M. J. (2017). Measurement of user emotion and experience in interaction with space. Journal of Asian Architecture and Building Engineering, 16(1), 99-106. https://doi.org/10.3130/jaabe.16.99
  9. Ciampelli, S., Voppel, A. E., de Boer, J. N., Koops, S., & Sommer, I. E. C. (2023). Combining automatic speech recognition with semantic natural language processing in schizophrenia. Psychiatry Research, 325, 115252. https://doi.org/10.1016/j.psychres.2023.115252
  10. Czepiel, A., Fink, L. K., Seibert, C., Scharinger, M., & Kotz, S. A. (2023). Aesthetic and physiological effects of naturalistic multimodal music listening. Cognition, 239, 105537.
  11. Deng, M., Wang, X., & Menassa, C. C. (2021). Measurement and prediction of work engagement under different indoor lighting conditions using physiological sensing. Building and Environment, 203, 108098.
  12. Fernandez Rojas, R., Hirachan, N., Brown, N., Waddington, G., Murtagh, L., Seymour, B., & Goecke, R. (2023). Multimodal physiological sensing for the assessment of acute pain. Frontiers in Pain Research, 4, 1150264.
  13. Gurel, N. Z., Huang, M., Wittbrodt, M. T., Jung, H., Ladd, S. L., Shandhi, M. M. H., Ko, Y. A., Shallenberger, L., Nye, J. A., & Pearce, B. (2020). Quantifying acute physiological biomarkers of transcutaneous cervical vagal nerve stimulation in the context of psychological stress. Brain Stimulation, 13(1), 47-59. https://doi.org/10.1016/j.brs.2019.08.002
  14. Hanjong, J. (2023, October 26). 2nd Sensing Architecture & Space[Oral presentation]. Autumn Annual Conference of ALK. Jeongseon-gun, Gangwon-do, Republic of Korea. https://conf.aik.or.kr/2023f/pages/committee.vm#a2
  15. Hsiao, S. J., & Sung, W. T. (2021). Using mobile technology to construct a network medical health care system. Intelligent Automation & Soft Computing, 31(2), 729-748. https://doi.org/10.32604/iasc.2022.020332
  16. Hu, X., Li, F., & Liu, R. (2022). Detecting music-induced emotion based on acoustic analysis and physiological sensing: a multimodal approach. Applied Sciences, 12(18), Article 18.
  17. Hofling, L., Oesterle, J., Berens, P., & Zeck, G. (2020). Probing and predicting ganglion cell responses to smooth electrical stimulation in healthy and blind mouse retina. Scientific Reports, 10(1), 5248. https://doi.org/10.1038/s41598-020-61899-y
  18. Johnson, T., Kanjo, E., & Woodward, K. (2023). DigitalExposome: Quantifying impact of urban environment on wellbeing using sensor fusion and deep learning. Computational Urban Science, 3(1), 14.
  19. Kanjo, E., Younis, E. M., & Ang, C. S. (2019). Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection. Information Fusion, 49, 46-56. https://doi.org/10.1016/j.inffus.2018.09.001
  20. Keller, M., Pelz, H., Perlitz, V., Zweerings, J., Erik Rocher, E., Baqapuri, H. I., & Mathiak, K. (2020). Neural correlates of fluctuations in the intermediate band for heart rate and respiration are related to interoceptive perception. Psychophysiology, 57(9), e13594.
  21. Kim, J., Yadav, M., Chaspari, T., & Ahn, C. R. (2020). Saliency detection analysis of collective physiological responses of pedestrians to evaluate neighborhood built environments. Advanced Engineering Informatics, 43, 101035.
  22. Kim, M., Cheon, S., & Kang, Y. (2019). Use of electroencephalography (EEG) for the analysis of emotional perception and fear to nightscapes. Sustainability, 11(1), 233.
  23. Kloda, L. A., Boruff, J. T., & Cavalcante, A. S. (2020). A comparison of patient, intervention, comparison, outcome (PICO) to a new, alternative clinical question framework for search skills, search results, and self-efficacy: a randomized controlled trial. Journal of the Medical Library Association: JMLA, 108(2), 185.
  24. Kruger, E. (2022). Seasonal Effects of Daylight Conditions on Occupant Perception and Skin Temperature. Frontiers in Sustainable Cities, 4. https://doi.org/10.3389/frsc.2022.782712
  25. Kurosaka, C., Maruyama, T., Yamada, S., Hachiya, Y., Ueta, Y., & Higashi, T. (2022). Estimating core body temperature using electrocardiogram signals. Plos One, 17(6), e0270626.
  26. Lea, R., Davis, S. K., Mahoney, B., & Qualter, P. (2023). Do emotionally intelligent adolescents flourish or flounder under pressure? Linking emotional intelligence to stress re gulation mechanisms. Personality and Individual Differences, 201, 111943. https://doi.org/10.1016/j.paid.2022.111943
  27. Mansi, S. A., Pigliautile, I., Arnesano, M., & Pisello, A. L. (2022). A novel methodology for human thermal comfort decoding via physiological signals measurement and analysis. Building and Environment, 222, 109385.
  28. Nixon, P., Dobson, S., Terzis, S., & Wang, F. (2002, October 30-31). Architectural implications for context adaptive smart spaces[Paper presentation]. Proceedings 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, Liverpool, United Kingdom.
  29. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hrobjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ..., Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372, n71.
  30. Pang, Y., Xu, X., Chen, S., Fang, Y., Shi, X., Deng, Y., Wang, Z. L., & Cao, C. (2022). Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots. Nano Energy, 96, 107137. https://doi.org/10.1016/j.nanoen.2022.107137
  31. Qu, Z., Chen, J., Li, B., Tan, J., Zhang, D., & Zhang, Y. (2020). Measurement of high-school students' trait math anxiety using neurophysiological recordings during math exam. IEEE Access, 8, 57460-57471. https://doi.org/10.1109/ACCESS.2020.2982198
  32. Santhosh, J., Dzsotjan, D., & Ishimaru, S. (2023). Multimodal assessment of interest levels in reading: Integrating eye-tracking and physiological sensing. IEEE Access, 11, 93994-94008
  33. Sato, W., Murata, K., Uraoka, Y., Shibata, K., Yoshikawa, S., & Furuta, M. (2021). Emotional valence sensing using a wearable facial EMG device. Scientific Reports, 11(1), 5757.
  34. Sel, K., Osman, D., Huerta, N., Edgar, A., Pettigrew, R. I., & Jafari, R. (2023). Continuous cuffless blood pressure monitoring with a wearable ring bioimpedance device. Npj Digital Medicine, 6(1), 1-11. https://doi.org/10.1038/s41746-022-00734-2
  35. Smith, V., Devane, D., Begley, C. M., & Clarke, M. (2011). Methodology in conducting a systematic review of systematic reviews of healthcare interventions. BMC Medical Research Methodology, 11(1), 15.
  36. Song, C., Droitcour, A. D., Islam, S. M. M., Whitworth, A., Lubecke, V. M., & Boric-Lubecke, O. (2023). Unobtrusive occupancy and vital signs sensing for human building interactive systems. Scientific Reports, 13(1), 954. https://doi.org/10.1038/s41598-023-27425-6
  37. Sonmez, N. O. (2018). A review of the use of examples for automating architectural design tasks. Computer-Aided Design, 96, 13-30. https://doi.org/10.1016/j.cad.2017.10.005
  38. Sripian, P., Anuardi, M. N. A. M., Ito, T., Tobe, Y., & Sugaya, M. (2021). Emotion-sensitive voice-casting care robot in rehabilitation using real-time sensing and analysis of biometric information. Journal of Ambient Intelligence and Smart Environments, 13(6), 413-431. https://doi.org/10.3233/AIS-210614
  39. Torku, A., Chan, A. P. C., Yung, E. H. K., & Seo, J. (2022). Detecting stressful older adults-environment interactions to improve neighbourhood mobility: A multimodal physiological sensing, machine learning, and risk hotspot analysis-based approach. Building and Environment, 224, 109533.
  40. Tyagi, S., & Szenasi, S. (2023). Semantic speech analysis using machine learning and deep learning techniques: A comprehensive review. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-17769-6
  41. Yang, D., Gao, B., Woo, W. L., Wen, H., Zhao, Y., & Gao, Z. (2023). Wearable Structured Mental-Sensing-Graph Measurement. IEEE Transactions on Instrumentation and Measurement, 72, 1-12. https://doi.org/10.1109/TIM.2022.3232163
  42. Zuccala, V. C., Favilla, R., & Coppini, G. (2021). Recognition of Stress Activation by Unobtrusive Multi Sensing Setup. Applied Sciences, 11(14), 6381.
  43. Zou, Z., & Ergan, S. (2021). Evaluating the effectiveness of biometric sensors and their signal features for classifying human experience in virtual environments. Advanced Engineering Informatics, 49, 101358. https://doi.org/10.1016/j.aei.2021.101358