DOI QR코드

DOI QR Code

Human disease-related long noncoding RNAs: Impact of ginsenosides

  • Siyeon Jang (Department of Life Science, Dongguk University-Seoul) ;
  • Hyeonjin Lee (Department of Life Science, Dongguk University-Seoul) ;
  • Hyeon Woo Kim (Department of Life Science, Dongguk University-Seoul) ;
  • Minjae Baek (Department of Life Science, Dongguk University-Seoul) ;
  • Sanghyun Jung (Department of Life Science, Dongguk University-Seoul) ;
  • Sun Jung Kim (Department of Life Science, Dongguk University-Seoul)
  • Received : 2023.12.15
  • Accepted : 2024.04.10
  • Published : 2024.07.01

Abstract

Ginsenosides in ginseng are known for their potential health benefits, including antioxidant properties and their potential to exhibit anticancer effects. Besides a various range of coding genes, ginsenosides impose their efficacy by targeting noncoding RNAs. Long noncoding RNA (lncRNA) has gained significant attention from both basic and clinical oncology fields due to its involvement in various cancer cell activities such as proliferation, apoptosis, metastasis, and autophagy. These events can be achieved either by lncRNA alone or in association with microRNAs or proteins. This review aims to summarize the diverse activities of lncRNAs that are regulated by ginsenosides, focusing on their role in regulating target genes through signaling pathways in human diseases. We highlight the results of studies on the expression profiles of lncRNAs induced by ginsenosides in efforts to inhibit cancer cell proliferation. Finally, we discuss the potential and challenges of utilizing lncRNAs as diagnostic markers for disease treatment.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program (NRF-2022R1A2C1003483) of the National Research Foundation of Korea, funded by the Ministry of Education, Science and Technology.

References

  1. Ahuja A, Kim JH, Kim JH, Yi YS, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2018;42:248-54.  https://doi.org/10.1016/j.jgr.2017.04.009
  2. Deng X, Wang J, Lu C, Zhou Y, Shen L, Ge A, Fan H, Liu L. Updating the therapeutic role of ginsenosides in breast cancer: a bibliometrics study to an in-depth review. Front Pharmacol 2023;14:1226629. 
  3. Fan M, Shan M, Lan X, Fang X, Song D, Luo H, Wu D. Anti-cancer effect and potential microRNAs targets of ginsenosides against breast cancer. Front Pharmacol 2022;13:1033017. 
  4. Park JE, Ji HW, Kim HW, Baek M, Jung S, Kim SJ. Ginsenoside Rh2 regulates the CFAP20DC-AS1/MicroRNA-3614-3p/BBX and TNFAIP3 Axis to induce apoptosis in breast cancer cells. Am J Chin Med 2022;50:1703-17.  https://doi.org/10.1142/S0192415X22500720
  5. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010;464:1071-6.  https://doi.org/10.1038/nature08975
  6. Das PK, Siddika A, Rashel KM, Auwal A, Soha K, Rahman MA, Pillai S, Islam F. Roles of long noncoding RNA in triple-negative breast cancer. Cancer Med 2023;12:20365-79.  https://doi.org/10.1002/cam4.6600
  7. Liu L, Zhang Y, Lu J. The roles of long noncoding RNAs in breast cancer metastasis. Cell Death Dis 2020;11:749. 
  8. Bartonicek N, Maag JL, Dinger ME. Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Mol Cancer 2016;15:43. 
  9. Nie Y, Zhou L, Wang H, Chen N, Jia L, Wang C, Wang Y, Chen J, Wen X, Niu C, et al. Profiling the epigenetic interplay of lncRNA RUNXOR and oncogenic RUNX1 in breast cancer cells by gene in situ cis-activation. Am J Cancer Res 2019;9:1635-49. 
  10. Nie W, Ge HJ, Yang XQ, Sun X, Huang H, Tao X, Chen WS, Li B. LncRNA-UCA1 exerts oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p. Cancer Lett 2016;371:99-106.  https://doi.org/10.1016/j.canlet.2015.11.024
  11. Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H, Su F, Li D, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 2015;27:370-81.  https://doi.org/10.1016/j.ccell.2015.02.004
  12. Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, Bishayee A. Regulation of long non-coding RNAs by plant secondary metabolites: a novel anticancer therapeutic approach. Cancers 2021;13:1274. 
  13. Chen X, Zhao Y, Wang D, Lin Y, Hou J, Xu X, Wu J, Zhong L, Zhou Y, Shen J, et al. The HNF4α-bc200-FMR1-positive feedback loop promotes growth and metastasis in invasive mucinous lung adenocarcinoma. Cancer Res 2021;81:5904-18.  https://doi.org/10.1158/0008-5472.CAN-21-0980
  14. Zhang C, Shen C. Identification of hub gene and lncRNA signature related to entotic cell death in cutaneous melanoma for prognostic and immune prediction. Medicine (Baltim) 2023;102:e35881. 
  15. Balusu S, Horr'e K, Thrupp N, Craessaerts K, Snellinx A, Serneels L, T'Syen D, Chrysidou I, Arranz AM, Sierksma A, et al. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer's disease. Science 2023;381:1176-82.  https://doi.org/10.1126/science.abp9556
  16. Uttam V, Rana MK, Sharma U, Singh K, Jain A. Circulating long non-coding RNA EWSAT1 acts as a liquid biopsy marker for esophageal squamous cell carcinoma: a pilot study. Noncoding RNA Res 2024;9:1-11. 
  17. Yang Q, Wang M, Xu J, Yu D, Li Y, Chen Y, Zhang X, Zhang J, Gu J, Zhang X. LINC02159 promotes non-small cell lung cancer progression via ALYREF/YAP1 signaling. Mol Cancer 2023;22:122. 
  18. Park JE, Kim HW, Yun SH, Kim SJ. Ginsenoside Rh2 upregulates long noncoding RNA STXBP5-AS1 to sponge microRNA-4425 in suppressing breast cancer cell proliferation. J Ginseng Res 2021;45:754-62.  https://doi.org/10.1016/j.jgr.2021.08.006
  19. Jeong D, Ham J, Park S, Kim HW, Kim H, Ji HW, Kim SJ. Ginsenoside Rh2 suppresses breast cancer cell proliferation by epigenetically regulating the long noncoding RNA C3orf67-AS1. Am J Chin Med 2019;47:1643-58.  https://doi.org/10.1142/S0192415X19500848
  20. Cong Z, Zhao Q, Yang B, Cong D, Zhou Y, Lei X, Zhang X. Ginsenoside Rh3 inhibits proliferation and induces apoptosis of colorectal cancer cells. Pharmacology 2020;105:329-38.  https://doi.org/10.1159/000503821
  21. Luo Y, Wang B, Liu J, Ma F, Luo D, Zheng Z, Lu Q, Zhou W, Zheng Y, Zhang C, et al. Ginsenoside RG1 enhances the paracrine effects of bone marrow-derived mesenchymal stem cells on radiation induced intestinal injury. Aging (Albany N Y) 2020;13:1132-52.  https://doi.org/10.18632/aging.202241
  22. Qi Z, Yan Z, Wang Y, Ji N, Yang X, Zhang A, Li M, Xu F, Zhang J. Ginsenoside Rh2 inhibits NLRP3 inflammasome activation and improves exosomes to alleviate hypoxia-induced myocardial injury. Front Immunol 2022;13:883946. 
  23. Kim EJ, Jung IH, Van Le TK, Jeong JJ, Kim NJ, Kim DH. Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J Ethnopharmacol 2013;146:294-9.  https://doi.org/10.1016/j.jep.2012.12.047
  24. Zhou T, Zu G, Zhang X, Wang X, Li S, Gong X, Liang Z, Zhao J. Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson's disease. Neuropharmacology 2016;101:480-9.  https://doi.org/10.1016/j.neuropharm.2015.10.024
  25. Lee H, Hong Y, Tran Q, Cho H, Kim M, Kim C, Kwon SH, Park S, Park J, Park J. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. J Ginseng Res 2019;43:431-41.  https://doi.org/10.1016/j.jgr.2018.07.003
  26. Luo X, Wang H, Ji D. Carbon nanotubes (CNT)-loaded ginsenosides Rb3 suppresses the PD-1/PD-L1 pathway in triple-negative breast cancer. Aging (Albany N Y) 2021;13:17177-89.  https://doi.org/10.18632/aging.203131
  27. Wang H, Yan Y, Lan H, Wei N, Zheng Z, Wu L, Jaspers RT, Wu G, Pathak JL. Notoginsenoside R1 promotes migration, adhesin, spreading, and osteogenic differentiation of human adipose tissue-derived mesenchymal stromal cells. Molecules 2022;27:3403. 
  28. Cui T, Xiao X, Pan Z, Tang K, Zhong Y, Chen Y, Guo J, Duan S, Zhong G, Li T, et al. Harnessing the therapeutic potential of ginsenoside Rd for activating SIRT6 in treating a mouse model of nonalcoholic fatty liver disease. ACS Omega 2023;8:29735-45. 
  29. Chen X, Liu W, Liu B. Ginsenoside Rh7 suppresses proliferation, migration and invasion of NSCLC cells through targeting ILF3-AS1 mediated miR-212/SMAD1 Axis. Front Oncol 2021;11:656132. 
  30. Liu M, Zhang Y, Zhang A, Deng Y, Gao X, Wang J, Wang Y, Wang S, Liu J, Chen S, et al. Compound K is a potential clinical anticancer agent in prostate cancer by arresting cell cycle. Phytomedicine 2023;109:154584. 
  31. Liang J, Tang X, Wan S, Guo J, Zhao P, Lu L. Structure modification of ginsenoside Rh(2) and cytostatic activity on cancer cells. ACS Omega 2023;8:17245-53.  https://doi.org/10.1021/acsomega.3c01665
  32. Hwang HJ, Hong SH, Moon HS, Yoon YE, Park SY. Ginsenoside Rh2 sensitizes the anti-cancer effects of sunitinib by inducing cell cycle arrest in renal cell carcinoma. Sci Rep 2022;12:19752. 
  33. Huang Y, Huang H, Han Z, Li W, Mai Z, Yuan R. Ginsenoside Rh2 inhibits angiogenesis in prostate cancer by targeting CNNM1. J Nanosci Nanotechnol 2019;19:1942-50.  https://doi.org/10.1166/jnn.2019.16404
  34. Hu QR, Huang QX, Hong H, Pan Y, Luo T, Li J, Deng ZY, Chen F. Ginsenoside Rh2 and its octyl ester derivative inhibited invasion and metastasis of hepatocellular carcinoma via the c-Jun/COX2/PGE2 pathway. Phytomedicine 2023;121:155131. 
  35. Li C, Gao H, Feng X, Bi C, Zhang J, Yin J. Ginsenoside Rh2 impedes proliferation and migration and induces apoptosis by regulating NF-κB, MAPK, and PI3K/Akt/mTOR signaling pathways in osteosarcoma cells. J Biochem Mol Toxicol 2020;34:e22597. 
  36. Chen WW, Huang YF, Hu ZB, Liu YM, Xiao HX, Liu DB, Zhuang YZ. Microarray analysis of altered long non-coding RNA expression profile in liver cancer cells treated by ginsenoside Rh2. J Asian Nat Prod Res 2019;21:742-53.  https://doi.org/10.1080/10286020.2018.1490273
  37. Dong B, Pang TT. LncRNA H19 contributes to Rh2-mediated MC3T3-E1cell proliferation by regulation of osteopontin. Cell Mol Biol (Noisy-le-grand) 2017;63:1-6.  https://doi.org/10.14715/cmb/2017.63.8.1
  38. Zhang XP, Li KR, Yu Q, Yao MD, Ge HM, Li XM, Jiang Q, Yao J, Cao C. Ginsenoside Rh2 inhibits vascular endothelial growth factor-induced corneal neovascularization. FASEB J 2018;32:3782-91.  https://doi.org/10.1096/fj.201701074RR
  39. Zhu Y, Dong S, Zhu Y, Zhao Y, Xu Y. Identification of cancer prognosis-associated lncRNAs based on the miRNA-TF co-regulatory motifs and dosage sensitivity. Mol Omics 2019;15:361-73.  https://doi.org/10.1039/C9MO00089E
  40. Gao Y, Li J, Wang J, Li X, Li J, Chu S, Li L, Chen N, Zhang L. Ginsenoside Rg1 prevent and treat inflammatory diseases: a review. Int Immunopharmacol 2020;87:106805. 
  41. Sun Y, Yang Y, Liu S, Yang S, Chen C, Lin M, Zeng Q, Long J, Yao J, Yi F, et al. New therapeutic approaches to and mechanisms of ginsenoside Rg1 against neurological diseases. Cells 2022;11:2529. 
  42. Xue LP, Fu XL, Hu M, Zhang LW, Li YD, Peng YL, Ding P. Rg1 inhibits high glucose-induced mesenchymal activation and fibrosis via regulating miR-2113/RP11-982M15.8/Zeb1 pathway. Biochem Biophys Res Commun 2018;501:827-32.  https://doi.org/10.1016/j.bbrc.2018.04.055
  43. Xu FT, Xu YL, Rong YX, Huang DL, Lai ZH, Liu XH, Yang LH, Mo S, Wu ZQ, Li HM. Rg1 promotes the proliferation and adipogenic differentiation of human adipose-derived stem cells via FXR1/lnc-GAS5-AS1 pathway. Curr Stem Cell Res Ther 2022;17:815-24.  https://doi.org/10.2174/1574888X16666211129121414
  44. Xue L, Hu M, Li J, Li Y, Zhu Q, Zhou G, Zhang X, Zhou Y, Zhang J, Ding P. Ginsenoside Rg1 inhibits high glucose-induced proliferation, migration, and angiogenesis in retinal endothelial cells by regulating the lncRNA SNHG7/miR-2116-5p/SIRT3 Axis. J Oncol 2022;2022:6184631. 
  45. Li J, Gao W, Zhao Z, Li Y, Yang L, Wei W, Ren F, Li Y, Yu Y, Duan W, et al. Ginsenoside Rg1 reduced microglial activation and mitochondrial dysfunction to alleviate depression-like behaviour via the GAS5/EZH2/SOCS3/NRF2 Axis. Mol Neurobiol 2022;59:2855-73.  https://doi.org/10.1007/s12035-022-02740-7
  46. Miao Y, Chen X, Qin M, Zhou W, Wang Y, Ji Y. lncRNA GAS5, as a ceRNA, inhibits the proliferation of diffuse large B-cell lymphoma cells by regulating the miR-18a-5p/RUNX1 axis. Int J Oncol 2021;59:94. 
  47. Cheng Y, Dai X, Yang T, Zhang N, Liu Z, Jiang Y. Low long noncoding RNA growth arrest-specific transcript 5 expression in the exosomes of lung cancer cells promotes tumor angiogenesis. J Oncol 2019;2019:2476175. 
  48. Ham J, Jeong D, Park S, Kim HW, Kim H, Kim SJ. Ginsenoside Rg3 and Korean Red Ginseng extract epigenetically regulate the tumor-related long noncoding RNAs RFX3-AS1 and STXBP5-AS1. J Ginseng Res 2019;43:625-34.  https://doi.org/10.1016/j.jgr.2019.02.004
  49. Zheng X, Zhou Y, Chen W, Chen L, Lu J, He F, Li X, Zhao L. Ginsenoside 20(S)-Rg3 prevents PKM2-targeting miR-324-5p from H19 sponging to antagonize the Warburg effect in ovarian cancer cells. Cell Physiol Biochem 2018;51:1340-53.  https://doi.org/10.1159/000495552
  50. Zhao L, Sun W, Zheng A, Zhang Y, Fang C, Zhang P. Ginsenoside Rg3 suppresses ovarian cancer cell proliferation and invasion by inhibiting the expression of lncRNA H19. Acta Biochim Pol 2021;68:575-82.  https://doi.org/10.18388/abp.2020_5343
  51. Zou J, Su H, Zou C, Liang X, Fei Z. Ginsenoside Rg3 suppresses the growth of gemcitabine-resistant pancreatic cancer cells by upregulating lncRNA-CASC2 and activating PTEN signaling. J Biochem Mol Toxicol 2020;34:e22480. 
  52. Chen Z, Li S, Shen L, Wei X, Zhu H, Wang X, Yang M, Zheng X. NF-kappa B interacting long noncoding RNA enhances the Warburg effect and angiogenesis and is associated with decreased survival of patients with gliomas. Cell Death Dis 2020;11:323. 
  53. Pu Z, Ge F, Wang Y, Jiang Z, Zhu S, Qin S, Dai Q, Liu H, Hua H. Ginsenoside-Rg3 inhibits the proliferation and invasion of hepatoma carcinoma cells via regulating long non-coding RNA HOX antisense intergenic. Bioengineered 2021;12:2398-409.  https://doi.org/10.1080/21655979.2021.1932211
  54. Zhang W, Wang Q, Du H, Jiang S. CRISPR/Cas9-mediated overexpression of long non-coding RNA SRY-box transcription factor 21 antisense divergent transcript 1 regulates the proliferation of osteosarcoma by increasing the expression of mechanistic target of rapamycin kinase and Kruppel-like factor 4. Bioengineered 2022;13:6678-87.  https://doi.org/10.1080/21655979.2021.1995106
  55. Wu P, Yu X, Peng Y, Wang QL, Deng LT, Xing W. Ginsenoside Rg3 alleviates septic liver injury by regulating the lncRNA TUG1/miR-200c-3p/SIRT1 axis. J Inflamm 2021;18:31. 
  56. Yang Y, He B, Yang R, Chen D, Zhang X, Li F, Shen Z, Chen P. Comprehensive analysis of lncRNA expression profiles in rats with cerebral ischemia-reperfusion injury after treatment with 20(R)-ginsenoside Rg3. J Integr Neurosci 2022;21:16. 
  57. Kim H, Ji HW, Kim HW, Yun SH, Park JE, Kim SJ. Ginsenoside Rg3 prevents oncogenic long noncoding RNA ATXN8OS from inhibiting tumor-suppressive microRNA-424-5p in breast cancer cells. Biomolecules 2021;11:118. 
  58. Wang Jun, Zhao L, Gao X. Ginsenoside Rg3 induces low expression of lncRNA ATXN8OS to inhibit colon cancer metastasis. Russ J Bioorganic Chem 2023;49:562-70.  https://doi.org/10.1134/S106816202303024X
  59. Wu K, Huang J, Li N, Xu T, Cai W, Ye Z. Antitumor effect of ginsenoside Rg3 on gallbladder cancer by inducing endoplasmic reticulum stress-mediated apoptosis in vitro and in vivo. Oncol Lett 2018;16:5687-96.  https://doi.org/10.3892/ol.2018.9331
  60. Chang L, Wang D, Kan S, Hao M, Liu H, Yang Z, Xia Q, Liu W. Ginsenoside Rd inhibits migration and invasion of tongue cancer cells through H19/miR-675-5p/CDH1 axis. J Appl Oral Sci 2022;30:e20220144. 
  61. Xu Y, Cao L, Zou W, Yu R, Shen W. Panax notoginseng saponins inhibits NLRP3 inflammasome-mediated pyroptosis by downregulating lncRNA-ANRIL in cardiorenal syndrome type 4. Chin Med 2023;18:50. 
  62. Kong Y, Hsieh CH, Alonso LC. ANRIL: a lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease. Front Endocrinol 2018;9:405. 
  63. Chen S, Wu Y, Qin X, Wen P, Liu J, Yang M. Global gene expression analysis using RNA-seq reveals the new roles of Panax notoginseng Saponins in ischemic cardiomyocytes. J Ethnopharmacol 2021;268:113639. 
  64. Yang Y, Xi P, Xie Y, Zhao C, Xu J, Jiang J. Notoginsenoside R1 reduces blood pressure in spontaneously hypertensive rats through a long non-coding RNA AK094457. Int J Clin Exp Pathol 2015;8:2700-9. 
  65. Zhao J, Cui L, Sun J, Xie Z, Zhang L, Ding Z, Quan X. Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis. Cell Signal 2020;76:109781. 
  66. Zhang S, Wang H, Wang J, Jin W, Yan X, Chen X, Wang D, Zhao D, Wang Y, Cong D, et al. Ginsenoside Rf inhibits human tau proteotoxicity and causes specific LncRNA, miRNA and mRNA expression changes in Caenorhabditis elegans model of tauopathy. Eur J Pharmacol 2022;922:174887. 
  67. Chen S, Ye H, Gong F, Mao S, Li C, Xu B, Ren Y, Yu R. Ginsenoside compound K exerts antitumour effects in renal cell carcinoma via regulation of ROS and lncRNA THOR. Oncol Rep 2021;45:38. 
  68. Tan Y, Sun D, Chen J, Li R, Wang S. Ginsenoside Rb3 alleviates smoke-induced lung injury via the H19/miR-29b-3p/HGMB1/TLR4 signalling pathway. J Cell Mol Med 2021;25:2725-9.  https://doi.org/10.1111/jcmm.15844
  69. Hu K, Yan TM, Cao KY, Li F, Ma XR, Lai Q, Liu JC, Pan Y, Kou JP, Jiang ZH. A tRNA-derived fragment of ginseng protects heart against ischemia/reperfusion injury via targeting the lncRNA MIAT/VEGFA pathway. Mol Ther Nucleic Acids 2022;29:672-88.  https://doi.org/10.1016/j.omtn.2022.08.014
  70. Lu S, Huang J, Zhang J, Wu C, Huang Z, Tao X, You L, Stalin A, Chen M, Li J, et al. The anti-hepatocellular carcinoma effect of Aidi injection was related to the synergistic action of cantharidin, formononetin, and isofraxidin through BIRC5, FEN1, and EGFR. J Ethnopharmacol 2024;319:117209. 
  71. Yang Z, Xu F, Teschendorff AE, Zhao Y, Yao L, Li J, He Y. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci 2022;9:1067406. 
  72. Liu J, Zhou WY, Luo XJ, Chen YX, Wong CW, Liu ZX, Bo Zheng J, Yu Mo H, Chen JQ, Li JJ, et al. Long noncoding RNA Regulating ImMune Escape regulates mixed lineage leukaemia protein-1-H3K4me3-mediated immune escape in oesophageal squamous cell carcinoma. Clin Transl Med 2023;13:e1410. 
  73. Endo I, Amatya VJ, Kushitani K, Nakagiri T, Aoe K, Takeshima Y. Long non-coding RNA LINC00152 requires EZH2 to promote mesothelioma cell proliferation, migration, and invasion. Anticancer Res 2023;43:5367-76.  https://doi.org/10.21873/anticanres.16740
  74. Xu H, Ba Z, Liu C, Yu X. Long noncoding RNA DLEU1 promotes proliferation and glycolysis of gastric cancer cells via APOC1 upregulation by recruiting SMYD2 to induce trimethylation of H3K4 modification. Transl Oncol 2023;36:101731. 
  75. Fang J, Li K, Huang C, Xue H, Ni Q. LncRNA TTN-AS1 confers tamoxifen resistance in breast cancer via sponging miR-107 to modulate PI3K/AKT signaling pathway. Am J Transl Res 2022;14:2267-79. 
  76. Lu S, Zeng L, Mo G, Lei D, Li Y, Ou G, Wu H, Sun J, Rong C, He S, et al. Long non-coding RNA SNHG17 may function as a competitive endogenous RNA in diffuse large B-cell lymphoma progression by sponging miR-34a-5p. PLoS One 2023;18:e0294729. 
  77. Kim HW, Baek M, Jung S, Jang S, Lee H, Yang SH, Kwak BS, Kim SJ. ELOVL2-AS1 suppresses tamoxifen resistance by sponging miR-1233-3p in breast cancer. Epigenetics 2023;18:2276384. 
  78. Lu J, Zhou Y, Zheng X, Chen L, Tuo X, Chen H, Xue M, Chen Q, Chen W, Li X, et al. 20(S)-Rg3 upregulates FDFT1 via reducing miR-4425 to inhibit ovarian cancer progression. Arch Biochem Biophys 2020;693:108569. 
  79. Zhang L, Cao Y, Kou X, Che L, Zhou X, Chen G, Zhao J. Long non-coding RNA HCG11 suppresses the growth of glioma by cooperating with the miR-4425/MTA3 axis. J Gene Med 2019;21:e3074. 
  80. Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci U S A 2013;110:20693-8. https://doi.org/10.1073/pnas.1310201110