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ASYMPTOTIC BEHAVIOR FOR STRONGLY DAMPED

WAVE EQUATIONS ON R3 WITH MEMORY

Xuan-Quang Bui, Duong Toan Nguyen, and Trong Luong Vu

Abstract. We consider the following strongly damped wave equation on

R3 with memory

utt −α∆ut − β∆u+ λu−
∫ ∞

0
κ′(s)∆u(t− s)ds+ f(x, u) + g(x, ut) = h,

where a quite general memory kernel and the nonlinearity f exhibit a
critical growth. Existence, uniqueness and continuous dependence results

are provided as well as the existence of regular global and exponential

attractors of finite fractal dimension.

1. Introduction

The main goal of this paper is to discuss the long-time behavior of the weak
solutions for the following strongly damped wave equation with memory on R3,

(1.1)



utt − α∆ut − β∆u+ λu−
∫ ∞

0

µ(s)∆ηt(s)ds

+ f(x, u) + g(x, ut) = h(x), x ∈ R3, t > 0,

u(x, t) = u0(x, t), x ∈ R3, t ≤ 0,

lim
|x|→∞

u(x, t) = 0, t ≥ 0,

where α and β are positive constants, µ is a summable positive function, and

(1.2) ηt = ηt(x, s) = u(x, t)− u(x, t− s), s ∈ R+.

Now, we define the strictly positive non-increasing function

κ(s) = β +

∫ ∞

s

µ(r)dr, s ∈ [0,+∞).
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The above equation reads

utt − α∆ut − κ(0)∆u+ λu−
∫ ∞

0

κ′(s)∆u(t− s)ds+ f(x, u) + g(x, ut) = h,

that is, a semilinear wave equation with a strong damping and convolution
terms.

In (1.1), with µ ≡ 0, we obtain the usual strongly damped wave equation

(1.3) utt − α∆ut − β∆u+ f(·, u) + g(·, ut) = h.

Well-posedness and long time behavior (in terms of attractors) of solutions for
equation (1.3) on bounded domains have been investigated by many authors
(see, e.g., [7, 8, 20–22] and references therein). Besides, equation (1.3) on un-
bounded domain (on RN ) has been also studied in [5, 9] and some references
therein.

The problem (1.1) in the case of bounded domains, without g(·, ut) and when
the memory kernel µ does not vanish (which reduces to a strongly damped wave
equation with memory effects), has been studied in [2, 10, 14], for a subcritical
nonlinearity and the following assumptions imposed on the memory kernel

µ′(s) + δµ(s) ≤ 0, ∀s > 0,

for some δ > 0. Besides, in [11], under the much weaker condition on the
memory kernel,

µ(r + s) ≤ Ne−δrµ(s)

for some N ≥ 1, δ > 0, every r ≥ 0, and almost every s > 0, Plinio, Pata
and Zelik pointed out the existence of global attractors of optimal regularity
for both critical and supercritical nonlinearities.

Recently, [19] also considered equation (1.1) in the case of time-dependent
memory and without g(·, ut). In this situation, the well-posedness, the existence
and the regularity of the time-dependent global attractor have been proved.

However, to the best of our knowledge, up to now, although there have been
several results on attractors for a strongly damped wave equation with memory,
hardly any of the previous studies deal with the equations on unbounded do-
mains and memory kernel effects. More specifically, we consider this equation
in the case of containing critical nonlinear term which makes the model more
complex.

The novelty of this paper is that it overcomes the essential difficulties: “both
the Sobolev embedding on R3 and the critical growth of f cause the lack of com-
pactness, as well as the complexity of the model caused by the memory term”
and establishes the well-posedness, the existence of the global and exponential
attractors for the equation with memory and critical nonlinearity.

To study problem (1.1), we assume that the nonlinearity f, g, the external
force h, and the memory term satisfy the following conditions:
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(H1) The convolution (or memory) kernel κ is a nonnegative summable func-
tion having the explicit form

κ(s) =

∫ ∞

s

µ(r)dr,

where µ ∈ L1(R+) is a decreasing (hence nonnegative) piecewise abso-
lutely continuous in each interval [0, T ] with T > 0. In particular, µ is
allowed to exhibit (infinitely many) jumps. Moreover, we require that

(1.4) κ(s) ≤ θµ(s)

for some θ > 0 and every s > 0. As shown in [13], this is completely
equivalent to the requirement that

(1.5) µ(r + s) ≤ Ne−δrµ(s)

for some N ≥ 1, δ > 0, every r ≥ 0 and almost every s > 0. As a
consequence,

κ(s) ≤ Ce−δs.

(H2) The nonlinearity f ∈ C1(R3 × R,R), with f(·, 0) = 0, satisfy for some
C > 0 the growth bound

(1.6) |f ′u(x, u)| ≤ C
(
1 + |u|4

)
, |f ′x(x, u)| ≤ C|u|5,

lim inf
|u|→∞

F (x, u)

u2
≥ 0, uniformly as x ∈ R3,

(1.7)

lim inf
|u|→∞

uf(x, u)− d1F (x, u)

u2
≥ 0, uniformly as x ∈ R3 and for some d1 > 0,

where F (x, u) =
∫ u

0
f(x, s)ds is a primitive of f .

(H3) Let g ∈ C1(R3 × R,R) with g(·, 0) = 0, satisfy for some C ≥ 0 the
growth bounds

(1.8) |g′m(x,m)| ≤ C(1 + |m|4),

along with the dissipation conditions

(1.9) lim inf
|m|→∞

g′m(x,m) > −λ.

(H4) The external force h is in L2(R3).

Remark 1.1. The main difficulties when we study the asymptotic behavior of
the problem are the lack of compactness caused by the unbounded domain, and
the fact that the nonlinearities f and g exhibit critical growth.

It is noticed that the condition in (H1) of the memory term is weaker than
the usual condition in [3, 4] in the sense that µ can be weakly singular at the

origin. For instance, we can take µ(s) = ce−as

s1−b with c ≥ 0 and a, b > 0.
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We infer from (H2) that for every νi > 0, i = 1, 2, 3, there exists Cνi
≥ 0

such that

(1.10) ⟨f(x, u), u⟩ − d1⟨F (x, u), 1⟩+ ν1∥u∥2 + Cν1
> 0,

and

(1.11) ⟨F (x, u), 1⟩ ≥ −ν2∥u∥2 − Cν2 .

It is obvious that (1.9) implies that there are λ > 0 and Cλ > 0 such that

(1.12) ⟨g(x, r)− λr, r⟩ ≥ λ∥r∥2 − Cλ.

2. Notations and preliminaries

In this section, we recall some notations about function spaces and prelimi-
nary results.

We introduce the Hilbert spaces H0 = L2(R3), H1 = H1(R3), and H2 =
H2(R3). Let ⟨·, ·⟩ and ∥ · ∥ denote the L2(R3)-inner product and L2(R3)-norm,
respectively. Besides, ⟨·, ·⟩b , b = 0, 1, 2 and ∥ · ∥b denote the Hb-inner product
and Hb-norm, respectively.

In view of (1.5), let L2
µ(R+;Hb) be the Hilbert space of functions φ : R+ →

Hb endowed with the inner product

⟨φ1, φ2⟩b,µ =

∫ ∞

0

µ(s) ⟨φ1(s), φ2(s)⟩b ds,

and let ∥φ∥b,µ denote the corresponding norm. We introduce product Hilbert
spaces

H1 = H1 ×H0 × L2
µ(R+;H1), H2 = H2 ×H1 × L2

µ(R+;H2).

We begin with rephrasing (1.1) as an autonomous dynamical system on a
suitable phase space. To this aim, as in [6], a new variable that reflects the
history of equation (1.1) is introduced, that is to be,

ηt(x, s) = u(x, t)− u(x, t− s), s ∈ R+.

Notice that ηt satisfies the boundary condition ηt(0) := lims→0 η
t(s) = 0 and

formally fulfills the equation

(2.1) ηtt(x, s) = −ηts(x, s) + ut(x, t),

with η0(s) = η0(s).
Taking for simplicity α = β = 1, the first equation of (1.1) can be trans-

formed into the following system

(2.2)

utt−∆ut−∆u+λu−
∫ ∞

0

µ(s)∆ηt(s)ds+f(x, u)+g(x, ut) = h(x),

ηtt = −ηts + ut.
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The associated initial-boundary conditions are

(2.3)


u(x, 0) = u0(x), x ∈ R3,

ut(x, 0) = v0(x), x ∈ R3,

η0(x, s) = η0(x, s) = u0(x, 0)− u0(x,−s), (x, s) ∈ R3 × R+.

Denote

z(t) = (u(t), ut(t), η
t), z0 = (u0, v0, η0).

To estimate the nonlinear term, we use the decomposition of g as follows.

Lemma 2.1. For every fixed λ > 0, the decomposition

g(x, r) = ϕ(x, r)− λr + ϕc(x, r)

holds for some ϕ, ϕc ∈ C1(R) with the following properties:

(1) ϕc is compactly supported with ϕc(x, 0) = 0;
(2) ϕ vanishes inside [−1, 1] and fulfills for some c ≥ 0 and every r ∈ R

the bounds

0 ≤ ϕ′(x, r) ≤ c|r|4.

Proof. By (1.9), we can see that g′(x,m) ≥ −λ, for all |r| ≥ k for k ≥ 1 large
enough. Choosing then any smooth function ϑ : R → [0, 1] satisfying

rϑ′(x, r) ≥ 0, ϑ =

{
0 if |r| ≤ k,

1 if |r| ≥ k + 1.

It is immediate to check that

ϕ(x, r) = ϑ(x, r)[g(x, r) + λr],

ϕc(x, r) = [1− ϑ(x, r)][g(x, r) + λr]

comply with the requirements. □

Due to Lemma 2.1, the function on H1 given by

Φ0(w) = 2

∫
R3

∫ w

0

ϕ(x, r)drdx

fulfills for every w ∈ H1 the inequality

(2.4) 0 ≤ Φ0(w) ≤ 2⟨ϕ(x,w), w⟩.

Besides, since

|ϕ(x,w)| 65 = |ϕ(x,w)| 15 |ϕ(x,w)| ≤ c|w||ϕ(x,w)|,

we can get that for all C > 0 sufficiently large

(2.5) ∥ϕ(x,w)∥
L

6
5
≤ C⟨ϕ(x,w), w⟩ 5

6 , ∀w ∈ H1.

We conclude the section by recalling a Gronwall-type lemma needed in the
sequel.
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Lemma 2.2 (see [7]). Given k ≥ 1 and C ≥ 0, let Λε : [0,∞) → [0,∞) be a
family of absolutely continuous functions satisfying for every ε > 0 small, the
following inequalities hold

1

k
Λ0 ≤ Λε ≤ kΛ0 and

d

dt
Λε + εΛε ≤ Cε6Λ3

ε + C.

Then there are constants δ > 0, R ≥ 0, and an increasing function Q ≥ 0 such
that

Λ0 ≤ Q(Λ0(0))e
−δt +R.

The plan of the paper is as follows: In Section 3, we discuss the well-
posedness of the Cauchy problem (1.1). In Section 4, we establish the exis-
tence of a global attractor and its regularity. Finally, in Section 5, we study
the exponential attractor.

3. Existence and uniqueness of weak solutions

We first define the solution for (2.2) with initial-boundary condition (2.3) as
follows.

Definition 3.1. A triplet form z = (u, ut, η
t) is called a weak solution of prob-

lem (2.2) for T > 0 with the initial datum z(0) = z0 ∈ H1 if z ∈ C([0, T ];H1)
and ∫ T

0

∫
R3

uttφdxdt+

∫ T

0

∫
R3

∇ut∇φdxdt+
∫ T

0

∫
R3

∇u∇φdxdt

+

∫ T

0

∫ ∞

0

µ(s)⟨∇η(s)∇φ⟩dsdt+ λ

∫ T

0

∫
R3

uφdxdt

+

∫ T

0

∫
R3

f(x, u)φdxdt+

∫ T

0

∫
R3

g(x, ut)φdxdt

=

∫ T

0

∫
R3

hφdxdt,∫ T

0

∫ ∞

0

µ(s)(∇ηtt ,∇ξt(s))dsdr +
∫ T

0

∫ ∞

0

µ(s)(∇ηts,∇ξt(s))dsdr

=

∫ T

0

∫ ∞

0

µ(s)(∇ut,∇ξt(s))dsdr

for every test functions φ ∈ H1 and ξt ∈ L2
µ(R+, H1), and a.e. t ∈ [0, T ].

The following result on the existence and uniqueness of weak solutions to
the model (1.1)-(1.2) (also (2.2)) was proved by a Faedo-Garlerkin.

Theorem 3.2. Assume that hypotheses (H1)-(H4) hold. Then for any z0 =
(u0, v0, η0) ∈ H1, problem (2.2)-(2.3) has a unique weak solution z = (u, ut, η

t)
on the interval [0, T ] satisfying

z ∈ C([0, T ];H1).
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Moreover, the weak solution depends continuously on the initial data on H1.

Proof. Existence. For each integer n ≥ 1, we denote by Pn and Qn the projec-
tions on the subspaces

span(φ1, . . . , φn) ⊂ H1, span(ζ1, . . . , ζn) ⊂ L2
µ(R+, H1),

respectively. Consider the approximate solution zn(t) = (un(t), ∂tun(t), η
t
n(s))

in the form

un(t) =

n∑
j=1

anj(t)φj , ∂tun(t) =

n∑
j=1

a′nj(t)φj , ηtn(s) =

n∑
j=1

bnj(t)ζj(s),

where ank(t) and bnj(t) are determined by the system of second order ordinary
differential equations〈

n∑
k=1

a′′nk(t)φk, φj

〉
+

〈
n∑

k=1

(νk + λ)a′nk(t)φk, φj

〉

+

〈
n∑

k=1

νkank(t)φk, φj

〉
+

〈
n∑

k=1

bnk(t)ζk, ζj

〉
1,µ

+

〈
f

(
n∑

k=1

ank(t)φk

)
, φj

〉
+

〈
g

(
n∑

k=1

a′nk(t)φk

)
, φj

〉
= ⟨h, φj⟩ , j, k = 1, 2, . . . , n(3.1)

with the initial data

(3.2)
(
un, ∂tun, η

t
n)
∣∣
t=0

= (Pnu0, Pnv0, Qnη0).

Since det(⟨φj , φk⟩) ̸= 0 and the nonlinear functions f and g are continuous, by
the Peano existence theorem, there exists at least one local solution to (3.1)–
(3.2) in the interval [0, Tn). Thus this allows constructing the approximate
solution zn(t). Multiplying the equation (3.1)j by the function a′nj(t), summing
from j = 1 to n, we have

1

2

d

dt

(
∥∂tun∥2 + ∥∇un∥2 + λ∥un∥2 + ⟨F (x, un), 1⟩

)
+ ∥∇∂tun∥2 +

∫ ∞

0

µ(s)⟨∇ηtn(s),∇∂tun⟩ds+ ⟨g(x, ∂tun), ∂tun⟩

= ⟨h, ∂tun⟩.(3.3)

Using (2.1) and then integrating by parts, we have∫ ∞

0

µ(s)⟨∇ηtn(s), ∂t∇un⟩ds

=

∫ ∞

0

µ(s)⟨∇ηtn(s),∇∂tηtn(s)⟩ds+
∫ ∞

0

µ(s)⟨∇ηtn(s),∇∂sηtn(s)⟩ds
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=
1

2

d

dt

(∫ ∞

0

µ(s)∥∇ηtn(s)∥2ds
)
−
∫ ∞

0

µ′(s)∥∇ηtn(s)∥2ds.

Besides, from conditions (H3), (1.12) and the Cauchy inequality, we can see
that

−
∫ ∞

0

µ′(s)∥∇ηtn(s)∥2ds ≥ 0,(3.4)

⟨g(x, ∂tun), ∂tun⟩ ≥ 2λ∥∂tun∥2 − Cλ,(3.5)

2⟨h, ∂tun⟩ ≤
1

λ
∥h∥2 + λ∥∂tun∥2.(3.6)

On the other hand, by multiplying the second equation of (2.2) by ηtn in
L2
µ(R+, H0), we get

d

dt

∫ ∞

0

µ(s)∥ηtn∥2ds−2

∫ ∞

0

µ′(s)∥ηtn∥2ds=2

∫ ∞

0

µ(s)⟨ηtn(s), ∂tun⟩ds

≤ κ(0)

λ

∫ ∞

0

µ(s)∥ηtn∥2ds+λ∥∂tun∥2.(3.7)

Therefore, summation of (3.3) and (3.7) and combining all the above estimates,
we get

1

2

d

dt

(
∥∂tun∥2 + ∥∇un∥2 + λ∥un∥2 + ∥ηtn∥21,µ + ⟨F (x, un), 1⟩

)
+ ∥∇∂tun∥2 + λ∥∂tun∥2ds

≤ κ(0)

λ

∫ ∞

0

µ(s)∥ηtn∥2ds+ C∥h∥2 + C.

Thus,

1

2

d

dt
y(t) + ∥∇∂tun∥2 + λ∥∂tun∥2ds ≤ Cy(t) + C(∥h∥2 + 1),

where

y(t) = ∥∂tun∥2 + ∥∇un∥2 + λ∥un∥2 + ∥ηtn∥21,µ + ⟨F (x, un), 1⟩,

and ∥zn∥2H1
≤ C1y(t).

Applying Gronwall’s lemma, we deduce that

y(t) ≤ eCT y(0) + CeCT
(
∥h∥2 + 1

)
,

where y(0) ≤ C2(∥z0∥2H1
+ ∥u0∥61). This inequality implies that

{un} is bounded in L∞(0, T ;H1),(3.8)

{ηtn} is bounded in L∞(0, T ;L2
µ(R+, H1)).(3.9)

Integrating from 0 to t, we obtain

(3.10) {∂tun} is bounded in L2(0, T ;H1).
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Now, multiplying the equation (3.1) by the function a′′nj(t), summing from
j = 1 to n, we get

2∥∂ttun∥2 +
d

dt
Q(t) = 2⟨f ′u(x, un)∂tun, ∂tun⟩+ 2∥∇∂tun∥2 + 2λ∥∂tun∥2

+ 2

∫ ∞

0

µ(s)⟨∇∂tηtn,∇∂tun⟩ds,(3.11)

where

Q(t) = ∥∇∂tun∥2 + ⟨∇un,∇∂tun⟩+ λ⟨un, ∂tun⟩

+ 2

∫ ∞

0

µ(s)⟨∇∂tηtn,∇∂tun⟩ds+ ⟨f(x, un), ∂tun⟩

+ ⟨G(x, ∂tun), 1⟩ − ⟨h(x), ∂tun⟩.

Using (3.8), (3.9), and (1.6), we obtain

⟨f ′u(x, un)∂tun, ∂tun⟩+ 2∥∇ut∥2 ≤ 2∥f ′u(x, un)∥L3/2∥∂tun∥2L6 + 2∥∇∂tun∥2

≤ C(1 + ∥un∥41)∥∂tun∥21 ≤ C∥∂tun∥21,(3.12)

and

2

∫ ∞

0

µ(s)⟨∇ηtt(s),∇∂tun⟩ds

= 2

∫ ∞

0

µ(s)⟨∇∂sηtn −∇∂tun,∇∂tun⟩ds

≤ 2

∫ ∞

0

µ(s)∥∇∂sηtn(s)∥∥∇∂tun∥ds+ 2κ(0)∥∇∂tun∥2

≤ 2

∫ ∞

0

µ(s)∥∇∂sηtn(s)∥2ds+ C∥∇∂tun∥2

≤ −
∫ ∞

0

µ′(s)∥∇ηtn(s)∥2ds+ C∥∂tun∥21.(3.13)

Combining (3.11), (3.12) and (3.13), then integrating over (0, T ), we get∫ T

0

∥∂ttun(r)∥2dr +Q(T ) ≤ Q(0) +

∫ T

0

∥∂tun(r)∥21dr,

where Q(0) ≤ C(∥z0∥H1
). This inequality implies that

(3.14) {∂ttun} is bounded in L2(0, T ;H0).

Combining (3.8), (3.9), (3.10) and (3.14), we deduce that there exists a sub-
sequence of {un} and {∂tun}, {ηtn} (still denoted by {un}, {∂tun} and {ηtn})
such that

un ⇀ u weakly-star in L∞(0, T ;H1),

∂tun ⇀ ∂tu weakly in L2(0, T ;H1),

∂ttun ⇀ ∂ttu weakly in L2(0, T ;H0),
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ηtn ⇀ ηt weakly-star in L∞(0, T ;L2
µ(R+, H1

0 (Ω))),(3.15)

and

∆un ⇀ ∆u weakly in L2(0, T ;H−1(R3)),

∆∂tun ⇀ ∆∂tu weakly in L2(0, T ;H−1(R3)),

∆ηtn ⇀ ∆ηt weakly in L2(0, T ;L2
µt
(R+, H−1(R3))).(3.16)

Using (H1), we have

∥f(x, un)∥6/5L6/5 ≤ C
(
∥un∥+ ∥un∥5L6

)
≤ C

(
1 + ∥un∥51

)
,

and

∥g(x, ∂tun)∥6/5L6/5 ≤ C
(
∥∂tun∥+ ∥∂tun∥5L6

)
≤ C

(
1 + ∥∂tun∥51

)
.

Using (3.8), (3.9), and (3.10) once again, we have

{f(x, un)} is bounded in L6/5(0, T ;L6/5(R3)),

{g(x, ∂tun)} is bounded in L6/5(0, T ;L6/5(R3)).

Thus,

f(x, un)⇀ χ1 weakly in L6/5(0, T ;L6/5(R3)),

g(x, ∂tun)⇀ χ2 weakly in L6/5(0, T ;L6/5(R3)).(3.17)

In addition, for each m ≥ 1, we denote Bm = {x ∈ RN : |x| ≤ m}. Let
ϕ ∈ C1([0,+∞)) be a function such that

0 ≤ ϕ ≤ 1, ϕ|[0,1] = 1, ϕ(s) = 0 for all s ≥ 2.

For each n and m we define

vn,m(x, t) = ϕ

(
|x|2

m2

)
un(x, t), ∂tvn,m(x, t) = ϕ

(
|x|2

m2

)
∂tun(x, t).

From (3.8), (3.9), and (3.10), for all m ≥ 1, we have the sequences {vn,m}n≥1

and {∂tvn,m}n≥1 are bounded L2
(
0, T ;H1

0 (B2m)
)
. Since B2m is a bounded

set, then H1
0 (B2m) ↪→ L2(B2m) compactly. Then, by in [17, Theorem 13.3 and

Remark 13.1] we can deduce that

{∂tvn,m} and {vn,m} are precompact in L2(0, T ;L2(B2m)),

and thus

{∂tun|Bm
} and {un|Bm

} are precompact in L2
(
0, T ;L2(Bm)

)
.

By a diagonal procedure, using (3.15), we deduce that there exists a subse-
quence of {un} (still denoted by {un}) such that

(un, ∂tun) → (u, ut) a.e. in Bm × (0, T ) as n→ +∞ for all m ≥ 1.

Then, since f(·, ·) are continuous,

f(x, un) → f(x, u) and g(x, ∂tun) → g(x, ut) a.e. in Bm × (0, T ),
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and since {f(x, un)} and {g(x, ∂tun)} are bounded in L6/5(0, T ;L6/5(Bm)), by
[15, Chapter 1, Lemma 3.1], we get

f(·, un)⇀ f(·, u) and g(·, ∂tun)⇀ g(·, ut) in L6/5(0, T ;L6/5(Bm)).

From (3.17),

f(·, un)⇀ χ1|Bm×(0,T ) and g(·, ∂tun)⇀ χ2|Bm×(0,T ) in L
6/5(0, T ;L6/5(Bm)).

Therefore,

χ1 = f(x, u), χ2 = g(x, ut) a.e. in Bm × (0, T ) for all m ≥ 1,

and thus, taking into account that
⋃∞

m=1Bm = R3, we obtain

(3.18) χ1 = f(x, u) χ2 = g(x, ut) a.e. in R3 × (0, T ).

Now combining (3.15), (3.16), (3.17), and (3.19), we see that zn = (un, ∂tun, η
t
n)

satisfies

utt −∆ut −∆u+ λu−
∫ ∞

0

µ(s)∆ηt(s)ds+ f(x, u) + g(x, ut) = h,

in H−1(R3) + L2
µ(R+, H1(R3) for a.e. t ∈ [0, T ]. By standard arguments, we

can check that z satisfies the initial condition z(0) = z0, and this implies that
z is a weak solution of problem (2.2).

Uniqueness and continuous dependence. We assume that z1 and z2 are two
solutions subject to initial data z1(0) and z2(0), respectively. Denote (w, η̄t) =
(u1 − u2, η

t
1 − ηt2), we have

wtt −∆wt −∆w + λw −
∫ ∞

0

µ(s)∆η̄t(s)ds

+ f(x, u1)− f(x, u2) + g(x, ∂tu1)− g(x, ∂tu2) = 0.(3.19)

Taking the inner product of (3.19) in H0 with wt, then using assumptions (2.1)
and (1.9), we see that

d

dt

(
∥wt∥2 + λ∥w∥2 + ∥∇w∥2 +

∫ ∞

0

µ(s)∥∇η̄t(s)∥2ds
)

+ 2∥∇wt∥2 +
∫ ∞

0

µ′(s)∥∇η̄t(s)∥2ds

≤ 2λ∥wt∥2 + 2C
(
1 + ∥u1∥4L6 + ∥u2∥4L6

)
∥w∥L6∥wt∥L6 .

Therefore,

d

dt

(
∥wt∥2 + λ∥w∥2 + ∥∇w∥2 +

∫ ∞

0

µ(s)∥∇η̄t(s)∥2ds
)

≤ 2(1 + λ)∥wt∥2 + C∥w∥21,(3.20)

where

2C
(
1 + ∥u1∥4L6 + ∥u2∥4L6

)
∥w∥L6∥wt∥L6 ≤ C∥w∥21 + ∥wt∥2 + ∥∇wt∥2,
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and

−
∫ ∞

0

µ′(s)∥∇η̄t(s)∥2ds ≥ 0.

On the other hand, as in (3.7), multiplying the second equation of (2.2) by η̄t

in L2
µ(R+, L2(R3)), we get

d

dt

∫ ∞

0

µ(s)∥η̄t∥2ds− 2

∫ ∞

0

µ′(s)∥η̄t∥2ds ≤ κ(0)

λ

∫ ∞

0

µ(s)∥η̄t∥2ds+ λ∥∂tw∥2.

(3.21)

Summation of (3.20) and (3.21), we get

d

dt
(∥wt∥2 + λ∥w∥2 + ∥∇w∥2 + ∥η̄t(s)∥21,µ)

≤ C(∥wt∥2 + λ∥w∥2 + ∥∇w∥2 + ∥η̄t(s)∥21,µ).
By the Gronwall inequality, we obtain

∥wt∥2 + λ∥w∥2 + ∥∇w∥2 + ∥η̄t(s)∥21,µ
≤ eCT (∥wt(0)∥2 + λ∥w(0)∥2 + ∥∇w(0)∥2 + ∥η̄0(s)∥21,µ).(3.22)

This proves the uniqueness (when z1(0) = z2(0)) and the continuous depen-
dence on the initial data of the weak solution. This completes the proof. □

4. The global attractor and its regularity

Theorem 3.2 allows us to define a continuous semigroup S(t) : H1 → H1

associated to problem (2.2) by the formula

S(t)z0 := z(t),

where z(·) is the unique global weak solution of (2.2) with the initial datum
z0 ∈ H1. The aim of this section is to prove the existence of a global attractor
for S(t) on H1, namely, to prove the following theorem.

Theorem 4.1. Assume that (H1)–(H4) hold. Then the semigroup {S(t)}t≥0

possesses a compact global attractor in H1.

To prove this theorem, by the classical abstract results on the existence
of global attractors (see e.g. [18, Theorem 1.1]), we need to show that the
semigroup S(t) has a bounded absorbing setB0 inH1 and S(t) is asymptotically
compact in H1.

4.1. Existence of an absorbing set

Lemma 4.2. The following inequality holds

d

dt
Ψ(t) + ∥ηt∥21,µ = 2

∫ ∞

0

µ(s)⟨ηt(s), u(t)⟩1ds,

where Ψ(t) =
∫∞
0
κ(s)∥ηt(s)− u(t)∥21ds > 0. Moreover,

Ψ(t) ≤ C0

(
∥ηt∥21,µ + ∥u(t)∥21

)
.
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Proof. By direct calculations and using the equations ∂tη
t − ut = −∂sηt and

κ′(s) = −µ(s), we have the equalities

d

dt
Ψ(t) =

d

dt

(∫ ∞

0

κ(s)∥ηt(s)− u(t)∥21ds
)

= 2

∫ ∞

0

κ(s)⟨∂tηt(s)− ∂tu(t), η
t(s)− u(t)⟩1ds

= −2

∫ ∞

0

κ(s)⟨∂sηt(s), ηt(s)− u(t)⟩1ds

= −2

∫ ∞

0

κ(s)⟨∂sηt(s), ηt(s)⟩1ds+ 2

∫ ∞

0

κ(s)⟨∂sηt(s), u(t)⟩1ds

= −
∫ ∞

0

κ(s)
d

ds
∥ηt∥21ds+ 2

∫ ∞

0

κ(s)
d

ds
⟨ηt(s), u(t)⟩1ds

=

∫ ∞

0

κ′(s)∥ηt∥21ds− 2

∫ ∞

0

κ′(s)⟨ηt(s), u(t)⟩1ds

= −∥ηt∥21,µ + 2

∫ ∞

0

µ(s)⟨ηt(s), u(t)⟩1ds.

On the other hand, from (1.4), we learn that

Ψ(t) ≤ C0

(
∥ηt∥21,µ + ∥u(t)∥21

)
.

The proof is complete. □

Lemma 4.3. Let the hypotheses (H1)–(H4) hold. Then there exists a bounded
absorbing set in H1 for the semigroup S(t).

(4.1) ∥z(t)∥2H1
≤ Q(∥z0∥H1

)e−γt +R1

for every z0 ∈ H1. Moreover,
(4.2)

sup
z∈B

∫ T

t

(
∥ut(r)∥21 + ⟨ϕ(x, ut), ut⟩ −

∫ ∞

0

µ′(s)∥ηr∥21ds
)
dr ≤ C + C(T − t)

for all T > t ≥ 0.

Proof. For a ∈ [0, 1) to be fixed later, multiplying the first equation of (2.2) by
ut(t) + au(t) in L2(R3), we obtain

1

2

d

dt

(
∥ut∥2 + λ(1− a)∥u∥2 + (1 + a)∥∇u∥2 +

∫ ∞

0

µ(s)∥∇ηt∥2ds

+ ⟨F (x, u), 1⟩+ 2a⟨ut, u⟩

)
+ aλ∥u∥2 + a∥∇u∥2 − (λ+ a)∥ut∥2 + ∥∇ut∥2 + ⟨ϕ(x, ut), ut⟩

−
∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ a⟨f(x, u), u⟩
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= − a⟨ϕ(ut), u⟩ − a

∫ ∞

0

µ(s)⟨∇ηt(s),∇u⟩ds+ ⟨q, ut + au⟩,(4.3)

where g(x, ut) = ϕ(x, ut)− λut + ϕc(x, ut), q = h− ϕc(·, ut), and∫ ∞

0

µ(s)⟨∇ηt,∇ut⟩ds =
1

2

d

dt

(∫ ∞

0

µ(s)∥∇ηt∥2ds
)
−
∫ ∞

0

µ′(s)∥∇ηt∥2ds.

Using (1.10), we have and

a⟨f(x, u), u⟩ ≥ d1a⟨F (x, u), 1⟩ − ν1a∥u∥2 − Cν1
.

Besides, using Lemma 2.1 and Young inequality, we get

2⟨q, ut + au⟩ ≤ 2 (∥h∥+ ∥ϕc(·, ut)∥) (a∥u∥+ ∥ut∥)
≤ ν1

(
a∥u∥2 + ∥ut∥2

)
+ C0,

where q ∈ L∞(R+;H0).
Multiplying the second equation of (2.2) by jηt in L2

µ(R+, L2(R3)), we get

d

dt
j

∫ ∞

0

µ(s)∥ηt∥2ds− 2j

∫ ∞

0

µ′(s)∥ηt∥2ds = 2j

∫ ∞

0

µ(s)⟨ηt(s), ut⟩ds

≤ jk∥ut∥2 + j

∫ ∞

0

µ(s)∥ηt∥2ds.(4.4)

Putting

Eja(t) = ∥ut∥2 + λ(1− a)∥u∥2 + (1 + a)∥∇u∥2

+

∫ ∞

0

µ(s)(j∥ηt∥2 + ∥∇ηt∥2)ds+ 2a⟨ut, u⟩+ ⟨F (x, u), 1⟩+ Cν2
.

From (1.11) and the estimation

2a⟨ut, u⟩ ≤ λa∥u∥2 + a

λ
∥ut∥2,

there exist positive constants δ0 small enough such that

Eja(t) ≥ δ0

(
∥ut∥2 + ∥u∥21 +

∫ ∞

0

µ(s)
(
j∥ηt∥2 + ∥∇ηt∥2

)
ds

)
and

(4.5) Ej0(t) ≤ 2Eja(t) ≤ 4Ej0(t).

Summation of (4.3) and (4.4) and plugging all the above inequalities into (4.3),
it follows that

d

dt
Eja + 2a(λ− ν1)∥u∥2 + 2a∥∇u∥2 + (λ− ν1)∥ut∥2 + 2∥∇ut∥2

+ 2d1a⟨F (u), 1⟩+
1

2
⟨ϕ(x, ut), ut⟩ − 2

∫ ∞

0

µ′(s)
(
j∥ηt∥2 + ∥∇ηt∥2

)
ds

+ 2a

∫ ∞

0

µ(s)⟨∇ηt(s),∇u⟩ds
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≤ − 2a⟨ϕ(x, ut), u⟩+ jk∥ut∥2 + j

∫ ∞

0

µ(s)∥ηt∥2ds+K,

where

K =
Cλ

2
+ C0 + 2d1aCν2

, ⟨ϕ(x, ut), ut⟩ ≥ 2λ∥ut∥2 − 2Cλ.

Now we define the functional

Λja(t) = Eja(t) + aΨj(t).

Using (4.5), (2.5) and Young inequality, we have

Ej0(t) ≤ Λj0(t) ≤ 2Λja(t) ≤ 4Λj0(t),

and

−2a⟨ϕ(x, ut), u⟩ ≤ 2a∥ϕ(x, ut)∥L6/5∥u∥L6 ≤ Ca⟨ϕ(x, ut), ut⟩5/6∥u∥1

≤ 1

4
⟨ϕ(x, ut), ut⟩+ Ca6Λ3

j .

From Lemma 4.2, by choosing γ > 0 which is small enough, we obtain

d

dt
Λja + 2aγΛja +

1

2
∥ut∥21 +

1

4
⟨ϕ(x, ut), ut⟩

−
∫ ∞

0

µ′(s)
(
j∥ηt∥2 + ∥∇ηt∥2

)
ds

≤ Ca6Λ3
ja − 2aj

∫ ∞

0

⟨ηt(s), u⟩ds+ jk∥ut∥2 + j

∫ ∞

0

µ(s)∥ηt∥2ds+ C.

Thus,

d

dt
Λja + 2aγΛja +

1

2
∥ut∥21 −

∫ ∞

0

µ′(s)
(
j∥ηt∥2 + ∥∇ηt∥2

)
ds

+
1

4
⟨ϕ(x, ut), ut⟩

≤ Ca6Λ3
ja + jk

(
∥ut∥2 + a∥u∥2

)
+ j(a+ 1)

∫ ∞

0

µ(s)∥ηt∥2ds+ C

≤ Ca6Λ3
ja + jkΛj0 + C,(4.6)

where

−2aj

∫ ∞

0

⟨ηt(s), u⟩ds ≤ jak∥u∥2 + ja

∫ ∞

0

µ(s)∥ηt∥2ds.

From (4.6), let j = 0 and then applying Lemma 2.2, there are constants γ > 0,
R ≥ 0, and an increasing function Q ≥ 0 such that

Λ00(t) ≤ Q(Λ00(0))e
−γt +R

≤ C
(
∥z0∥2H1

+ 2d2∥u0∥6L6

)
e−γt +R

≤ ρ0.(4.7)
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Besides, considering (4.6) for j ̸= 0, then using (4.7) and Lemma 2.2, we
obtain

Λ10(t) ≤ Q(Λ10(0))e
−γt +R1

≤
(
∥z0∥2H1

+ 2d2∥u0∥6L6

)
e−γt +R1.

Hence there exists ρ1 > 0 such that

(4.8) ∥z(t)∥2H1
≤ ρ1

for all z0 ∈ B and for all t ≥ TB , where B is an arbitrary bounded subset of H1.
Finally, integrating (4.6) on (t, T ) and using (4.8), the proof is completed. □

To prove the asymptotic compactness in the next section, we must use some
of the following lemmas:

Lemma 4.4 (see [7, Lemma 6.2]). If B0 is an invariant absorbing set, then

B1 = S(1)B0 ⊂ B0

remains invariant and absorbing, and any (bounded) function Λ : B1 → R
satisfies

sup
t≥0

sup
z0∈B1

Λ(S(t)z0) = sup
t≥0

sup
z0∈B0

Λ(S(t+ 1)z0) ≤ sup
z0∈B0

Λ(S(1)z0).

Lemma 4.5. There exist an invariant absorbing set B1 and a constant C =
C(B1) ≥ 0 such that, for all initial data in B1,

sup
t≥0

∥ut(t)∥21 ≤ C,

∫ 1

0

∥utt(t)∥2 ≤ C.

Proof. Now, we consider the initial data z0 ∈ B0. Taking the inner product in
H0 of (2.2) and utt, and adding to both sides the term 2⟨u, ut⟩, we get

d

dt

(
∥ut∥2 + ∥∇ut∥2 + 2Φ0(ut) + 2⟨f(x, u), ut⟩+ 2⟨∇u,∇ut⟩

+ 2

∫ ∞

0

µ(s)⟨∇ηt(s),∇ut⟩ds

)
+ 2∥utt∥2

= 2⟨f ′u(x, u)ut, ut⟩+ 2∥∇ut∥2

+ 2

∫ ∞

0

µ(s)⟨∇ηtt(s),∇ut⟩ds+ 2⟨u, ut⟩+ 2⟨q, utt⟩,(4.9)

where q = h+ λut + ϕc(·, ut) and Φ0(ut) is defined as in (2.4).
Using (4.8), (1.6), and Lemma 2.1, we obtain

⟨f ′u(x, u)ut, ut⟩+ 2∥∇ut∥2 ≤ 2∥f ′u(x, u)∥L3/2∥ut∥2L6 + 2∥∇ut∥2

≤ C(1 + ∥u∥21)∥ut∥21 ≤ C∥ut∥21,

2⟨u, ut⟩+ 2⟨q, utt⟩ ≤ 2∥u∥∥ut∥+ 2∥q∥∥utt∥ ≤ ∥utt∥2 + C,



STRONGLY DAMPED WAVE EQUATIONS WITH MEMORY 813

and

2

∫ ∞

0

µ(s)⟨∇ηtt(s),∇ut⟩ds = 2

∫ ∞

0

µ(s)⟨∇ηts(s)−∇ut,∇ut⟩ds

≤ 2

∫ ∞

0

µ(s)∥∇ηts(s)∥∥∇ut∥ds+ 2κ(0)∥∇ut∥2

≤
∫ ∞

0

µ(s)∥∇ηts(s)∥2ds+ C∥∇ut∥2

= −
∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ C∥ut∥21.(4.10)

Now we define the functional

Λ = Λ(S(t)z0) = ∥ut∥2 + ∥∇ut∥2 + 2Φ0(ut) + 2⟨f(x, u), ut⟩+ 2⟨∇u,∇ut⟩

+ 2

∫ ∞

0

µ(s)⟨∇ηt(s),∇ut⟩ds+K,

fulfils for sufficiently large K = K(B0, Cν1) > 0 so that

∥ut∥21 ≤ 2Λ ≤ C(1 + ∥ut∥21 + 2⟨ϕ(ut), ut⟩).

In particular, we deduce from (4.2) that∫ 1

0

Λ(S(t)z0)dt+

∫ 1

0

∫ ∞

0

−µ′(s)∥∇ηt(s)∥2dsdt ≤ C.

Combining (4.9)-(4.10), we obtain

d

dt
Λ + ∥utt∥2 ≤ −

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ C∥ut∥21 +K.

Thus,

(4.11)
d

dt
Λ + ∥utt∥2 ≤ CΛ−

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+K.

Therefore, multiplying at every fixed time t ∈ [0, 1] both terms of (4.11), we
get

d

dt
[tΛ] ≤ CΛ−

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+K,

and subsequent integration on [0, 1] gives

Λ(S(1)z0) ≤ C

∫ 1

0

Λ(S(t)z0)dt+ C ≤ C.

Hence, we can choose

B1 = S(1)B0 ⊂ B0

and applying Lemma 4.4, we have

sup
t≥0

sup
z0∈B1

Λ(S(t)z0) ≤ sup
z0∈B0

Λ(S(1)z0) ≤ C,
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establishing the desired bound

sup
t≥0

sup
z0∈B1

∥ut(t)∥1 ≤ C.

On the other hand, for initial data z0 ∈ B1, the inequality (4.11) improves to

d

dt
Λ + ∥utt∥2 ≤ −

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ C.

Integrating the above inequality over [0, 1], we provide the remaining integral
control. □

Lemma 4.6. There exists an invariant absorbing set B0 satisfying

sup
t≥0

sup
z0∈B0

(
∥ut(t)∥21 + ∥utt∥2 +

∫ t+1

t

∥utt(r)∥21dr
)
<∞.

Proof. Taking initial data z0 ∈ B1, with B1 is the invariant absorbing set of
the previous lemma.

Differentiating (2.2) with respect to time and then multiplying both terms
by 2utt, we get

d

dt

(
∥utt∥2 + ∥∇ut∥2 + λ∥ut∥2

)
+ 2∥∇utt∥2 + 2⟨ϕ′(x, ut)utt, utt⟩

= − 2

∫ ∞

0

µ(s)⟨∇ηtt(s),∇utt⟩ds−2⟨f ′u(x, u)ut, utt⟩+2⟨λutt−ϕ′c(x, ut)utt, utt⟩.

Since ϕ′(x, ut) ≥ 0,
2⟨ϕ′(x, ut)utt, utt⟩ ≥ 0.

Using Lemma 4.5 and (4.1), we can see that

−2⟨f ′u(x, u)ut, utt⟩ ≤ ∥f ′u(x, u)∥L3/2∥ut∥L6∥utt∥L6

≤ ∥utt∥21 + C.

Besides,
2⟨λutt − ϕ′c(x, ut)utt, utt⟩ ≤ C∥utt∥2 + C,

and

− 2

∫ ∞

0

µ(s)⟨∇ηtt(s),∇utt⟩ds

= − 2

∫ ∞

0

µ(s)⟨∇ut −∇ηts(s),∇utt⟩ds

≤ d

dt
(−2κ(0)∥∇ut∥2) + 2

∫ ∞

0

µ(s)∥∇ηts(s)∥∥∇utt∥ds

≤ − 2κ(0)
d

dt
∥∇ut∥2 −

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ ∥∇utt∥2.

Summarizing, we arrive at

(4.12)
d

dt
Λ + (∥∇utt∥2 + ∥utt∥2) ≤ CΛ−

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ C,
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where
Λ = ∥utt∥2 + (1 + 2κ(0))∥∇ut∥2 + λ∥ut∥2.

Using Lemma 4.5, we get ∫ 1

0

Λ(S(t)z0)dt ≤ C.

Therefore, multiplying by t and integrating on [0, 1], we obtain

Λ(S(1)z0) ≤ C.

Putting
B = S(1)B1 ⊂ B1,

we deduce from Lemma 4.4 that

sup
t≥0

sup
z∈B

(∥ut(t)∥21 + ∥utt∥2) = sup
t≥0

sup
z∈B

Λ(S(t)z0) ≤ C.

Now, choosing initial data z0 ∈ B, we can rewrite (4.12) as follow:

d

dt
Λ + ∥utt∥21 ≤ −C

∫ ∞

0

µ′(s)∥ηt(s)∥2ds+ C.

Integrating from t to t+ 1 and using (4.2) the proof is over. □

4.2. Asymptotic compactness

One of the main difficulties of the problem is, of course, that the Sobolev
embeddings are no longer compact.

For any r > 0 introduce two smooth positive functions φi
r : R3 → R+, for

i = 0, 1, such that

φ0
r(x) + φ1

r(x) = 1 for all x ∈ R3,

and

φ0
r(x) = 0 if |x| ≤ r,

φ1
r(x) = 0 if |x| ≥ r + 1.

To make the asymptotic regular estimates, we decompose f and define
hi, i = 0, 1, as follows:

−f(x,m) + h(x)− ϕc(x, ut) + g(x, 0) = −f0(x,m) + h0 − f1(x,m) + h1,

where

h0 = (h(x)− ϕc(x, ut) + g(x, 0))φ0
r(x),

h1 = (h(x)− ϕc(x, ut) + g(x, 0))φ1
r(x),

and fi ∈ C1(R,R), f0(x, 0) = 0 such that

f0(x,m) =

(
f(x,m) + (ν1 + d1ν2)m+

Cν1
+ d1Cν1

m

)
σ(m),

f1(x,m) = f(x,m)− f0(x,m),
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with σ : R → [0, 1] is a Lipschitz function where σ(m) = 0 if |m| ≤ 1 and
σ(m) = 1 if |m| > 2.

Therefore, for some C > 0, the nonlinearities fi satisfy

f0(x,m)m ≥ 0, F0(x,m) =

∫ m

0

f0(x, y)dy ≥ 0,(4.13)

|f0(x,m)| ≤ C|m|5,(4.14)

|f1(x,m)| ≤ C(1 + |m|),(4.15)

and finally,

h1 = 0 for m ∈ R, |x| ≥ r + 1, ∥h0∥ → 0 as r → ∞.(4.16)

Now, we decompose the solution S(t)z0 = z(t) of problem (2.2) as follows:

S(t)z0 = S1(t)z0 + S2(t)z0,

where S1(t)z0 = z1(t) and S2(t)z0 = z2(t), that is, z = (u, ut, η
t) = z1 + z2,

with

u = v + w, ηt = ξt + ζt,

z1 = (v, vt, ξ
t), z2 = (w,wt, ζ

t),

solve the following problems:

(4.17)



∂ttv −∆∂tv + λvt −∆v + λv −
∫ ∞

0

µ(s)∆ξt(s)ds+ f0(x, v)

+ ϕ(x, ut)− ϕ(x,wt) = h0,

∂tξ
t = −∂sξt + vt,

(v(0), vt(0), ξ
0) = z0,

and

(4.18)


∂ttw −∆∂tw + λwt −∆w + λw −

∫ ∞

0

µ(s)∆ζt(s)ds

+ f0(x, u)− f0(x, v) + ϕ(x,wt) = h1 + λut − f1(x, u),

∂tζ = −∂sζ + wt,

(w(0), wt(0), ζ
0) = (0, 0, 0).

By the standard Galerkin method, problems (4.17)-(4.18) are easily seen to
satisfy existence and continuous dependence results analogous to those of The-
orem 3.2.

We will establish some a priori estimates about the solutions of (4.17) and
(4.18). Firstly, we have some preliminaries lemmas.

Lemma 4.7. The uniform bound

∥v∥21 + ∥vt∥2 +
∫ ∞

0

µ(s)∥∇ξt∥2ds ≤ C
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holds, along with the integral estimate

(4.19)

∫ ∞

0

∥vt(t)∥21dt ≤ C.

Proof. Multiplying the first equation of (4.17) by 2vt we get

d

dt

(
∥vt(t)∥2 + λ∥v(t)∥2 + ∥∇v(t)∥2 +

∫ ∞

0

µ(s)∥∇ξt∥2ds+ 2⟨F0(x, v), 1⟩
)

+ 2λ∥vt(t)∥2 + 2∥∇vt(t)∥2 − 2

∫ ∞

0

µ′(s)∥∇ξt∥2ds

+ 2⟨ϕ(x, ut)− ϕ(x,wt), vt⟩
= 2⟨h0, vt⟩.

From (2.4), (H1) and applying the Young inequality, we get

2⟨ϕ(x, ut)− ϕ(x,wt), vt⟩ = 2⟨ϕ′(x, ut + θwt)vt, vt⟩ ≥ 0, 0 < θ < 1,(4.20)

− 2

∫ ∞

0

µ′(s)∥∇ξt∥2ds > 0,(4.21)

2⟨h0, vt⟩ ≤ C∥h0∥2 + λ∥vt(t)∥2.(4.22)

Thus, we get

d

dt

(
∥vt(t)∥2 + λ∥v(t)∥2 + ∥∇v(t)∥2 +

∫ ∞

0

µ(s)∥∇ξt∥2ds+ 2⟨F0(x, v), 1⟩
)

+ a∥vt(t)∥21
≤ C∥h0∥2,

implying that

∥vt(t)∥2 + ∥v(t)∥21 +
∫ ∞

0

µ(s)∥∇ξt∥2ds+
∫ t

0

∥vt(r)∥21dr

≤ C

(
∥vt(t)∥2 + λ∥v(t)∥2 + ∥∇v(t)∥2 +

∫ ∞

0

µ(s)∥∇ξt∥2ds+ 2⟨F0(x, v), 1⟩
)

+

∫ t

0

∥vt(r)∥21dr ≤ C.

Since t ≥ 0 is arbitrary, we are finished. □

Collecting Lemma 4.6 and (4.19) we draw an immediate corollary.

Corollary 4.8. There is M = M(ρ2) > 0 such that, for any time T ≥ 1, the
estimate

∥wt(tT )∥1 ≤M

occurs for some tT = tT (z0) ∈ [T − 1, T ].

Lemma 4.9. The uniform bound ∥wt∥1 ≤ C holds.



818 X.-Q. BUI, D. T. NGUYEN, AND T. L. VU

Proof. Multiplying the first equation of (4.18) by 2wtt we get

d

dt
Λ + 2∥wtt∥2 ≤ 2⟨h1 + λut − f1(x, u), wtt⟩+ 2∥wt∥2

+ 2⟨f ′0(x, u)ut − f ′0(x, v)vt, wt⟩

+ 2

∫ ∞

0

µ(s)∥∇ζt∥∥∇wtt∥ds,

where

Λ = λ∥wt∥2 + ∥∇wt∥2 +Φ0(wt) + 2λ⟨wt, w⟩
+ 2⟨∇wt,∇w⟩+ 2⟨f0(x, u)− f0(x, v), wt⟩+K

and K = K(ρ1) > 0 large enough in order to have

∥wt∥21 ≤ Λ ≤ C(1 + ∥wt∥61).
Indeed, thanks to Lemmas 4.6 and 4.7,

2|⟨f0(x, u)− f0(x, v), wt⟩| ≤ 2∥f0(x, u)− f0(x, v)∥L6/5∥wt∥L6

≤ 1

4
∥wt∥21 + C,

and

∥wt∥21 ≤ ∥vt∥21 + ∥ut∥21 ≤ ∥vt∥21 + C,

the right-hand side is controlled by

2(∥h1∥+ λ∥ut∥+ ∥f1(x, u)∥)∥wtt∥+ 2∥wt∥2

+ 2 (∥f ′0(x, u)∥L3/2∥ut∥L6 + ∥f ′0(x, v)∥L3/2∥vt∥L6) ∥wt∥L6

+ 2

∫ ∞

0

µ(s)∥∇ζt∥∥∇wtt∥ds

≤ 2∥wtt∥2 + C∥wt∥21 + C∥vt∥1∥wt∥1 + C

≤ 2∥wtt∥2 + C∥vt∥21 + C.

Thus, we obtain

d

dt
Λ ≤ C∥vt∥21 + C.(4.23)

Integrating (4.23) over [t, T ], T > 0, for some positive t ≥ T − 1, and using
(4.19), we get

∥wt(T )∥21 ≤ 2Λ(T ) ≤ C + 2Λ(t) ≤ C(1 + ∥wt∥61).
If T ≤ 1 we choose t = 0, otherwise we choose t = tT as in Corollary 4.8. In
either case, the desired bound follows. □

Combining Lemmas 4.3, 4.6 and 4.7, we get

(4.24) ∥u∥21 + ∥v∥21 + ∥w∥21 + ∥ut∥21 + ∥vt∥21 + ∥wt∥21 + ∥ηt(s)∥21,µ ≤ C.

Firstly, we prove that the solution v becomes small as r → ∞ and t→ ∞.
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Lemma 4.10. Assume that hypotheses of f0, ϕ and h0 hold. Then the solutions
of equation (4.17) satisfy the following estimate: for every ω > 0 there exist
Tω > 0, rω > r0 and a constant γ2 > 0, such that the solution v to (4.17),
corresponding to r = rω, fulfills the inequality

∥S1(t)z0∥2H1
≤ ∥z0∥H1e

−γ2t + ω for all t ≥ 0.

Proof. Multiplying the first equation of (4.17) by vt + av and adding to both
sides the term

d

dt
j

∫ ∞

0

µ(s)∥ξt∥2ds− 2j

∫ ∞

0

µ′(s)∥ξt∥2ds

= 2j

∫ ∞

0

µ(s)⟨ξt(s), vt⟩ds

≤ jk∥vt(t)∥2 + j

∫ ∞

0

µ(s)∥ξt(s)∥2ds,

we get

d

dt
Eja + aλ∥v(t)∥2 + 2a∥∇v(t)∥2 + λ∥vt(t)∥2 + 2∥∇vt(t)∥2

+ 2a⟨f0(x, v), v⟩+ 2⟨ϕ(x, ut)− ϕ(x,wt), vt⟩

≤ C∥h0∥2 + jk∥vt(t)∥2 + j

∫ ∞

0

µ(s)∥ξt(s)∥2ds− 2a⟨ϕ(x, ut)− ϕ(x,wt), v⟩,

where

Eja = ∥vt(t)∥2 + λ(1 + a)∥v(t)∥2 + (1 + a)∥∇v(t)∥2

+

∫ ∞

0

µ(s)(j∥ξt(s)∥2 + ∥∇ξt(s)∥2)ds+ 2⟨F0(x, v), 1⟩+ 2a⟨ut, u⟩.

Using (4.13), (4.14) and (4.24), we get

(4.25) ∥z1j∥2H1
≤ 2Ej0 ≤ 4Eja ≤ 8Ej0 ≤ C∥z1j∥2H1

.

From Lemma 2.1 and (4.24), we get

2⟨ϕ(x, ut)− ϕ(x,wt), vt⟩ ≥ 0,

and

2a⟨ϕ(x, ut)− ϕ(x,wt), v⟩ ≤ 2a∥ϕ(x, ut)− ϕ(x,wt)∥L6/5∥v∥L6

≤ Ca∥vt∥1∥v∥1
≤ Ca1/2∥vt∥21 + Ca3/2∥v∥21.

Now we also define the functional

Λja(t) = Eja(t) + aΨj(t),

where

Ψ(t) =

∫ ∞

0

κ(s)(j∥ξt(s)− v(t)∥2 + ∥∇(ξt(s)− v(t))∥2ds > 0.
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Using (4.25), Lemma 4.2, and Young inequality, we have

∥z1j∥2H1
≤ Λj0(t) ≤ 2Λja(t) ≤ 4Λj0(t) ≤ C∥z1j∥2H1

and the inequality

d

dt
Ψ(t) +

∫ ∞

0

µ(s)(j∥ξt∥2 + ∥∇ξt∥2)ds

= 2

∫ ∞

0

µ(s)j⟨ξt, v⟩+ ⟨∇ξt,∇v⟩ds

≤ 1

2

∫ ∞

0

µ(s)(j∥ξt∥2 + ∥∇ξt∥2)ds+ 2k(j∥v∥2 + ∥∇v∥2).

Therefore, there exists a positive constant γ such that

d

dt
Λja + 2γΛja ≤ 4kjΛj0 + C∥h0∥2.(4.26)

Putting j = 0 in (4.26) and subsequently substituting the result into (4.26)
with j = 1, we obtain

∥v(t)∥21 + ∥vt(t)∥2 + ∥ξt(s)∥21,µ ≤ ∥z0∥H1e
−γ2t + ω,

where the constant ω depends on ∥h0∥ with ∥h0∥ → 0 as r → ∞. This
completes the proof. □

Given R > 0, we shall denote B(R) = {x ∈ R3 : |x| ≤ R}. Based on
Lemma 4.10, any solution (w,wt, ζ

t) to (4.18) solves the Dirichlet problem
on the bounded domain B(R), in the time interval [0, Tω]. Namely, for every
t ∈ [0, Tω],

(w(t), wt(t), ζ
t(s))|∂B(R) = 0, ∀s > 0.

Next, we prove that the solution (w,wt, ζ
t) to (4.18) identically vanishes

outside the set B(R)× [0, Tω]. As in [1], given ρ > 0, we introduce the function
ψρ : R3 → [0, 1] as

ψρ(x) =


0, |x| < ρ+ 1,

sin2
[
π
2

(
|x|
ρ+1 − 1

)]
, ρ+ 1 ≤ |x| ≤ 2ρ+ 2,

1 |x| > 2ρ+ 2.

Therefore, we can easily obtain the following estimates hold for all x ∈ R

|∇ψρ(x)| ≤
π

2(ρ+ 1)
,(4.27)

|∇ψ2
ρ(x)| ≤

π

ρ+ 1
ψρ(x),(4.28)

|∆ψρ(x)| ≤
3π2

2(ρ+ 1)2
.(4.29)
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Lemma 4.11. There exist R > 0 and Tω > 0 such that the solution (w,wt, ζ
t)

to (4.18) identically vanishes outside the set B(R) × [0, Tω], in the sense that
fulfills the inequality

∥ψρw∥21 + ∥ψρwt∥2 + ∥ψρζ
t∥21,µ ≤ ω for all t ≥ Tω.

Proof. Taking the product in H0 of (4.18) and ψ2
ρwt, and adding to both sides

the term

d

dt

∫ ∞

0

µ(s)∥ψρζ
t∥2ds− 2

∫ ∞

0

µ′(s)∥ψρζ
t∥2ds = 2

∫ ∞

0

µ(s)⟨ψ2
ρζ

t(s), wt⟩ds

we get

1

2

d

dt

(∫
R3

ψ2
ρ|wt|2dx+ λ

∫
R3

ψ2
ρ|w|2dx+

∫ ∞

0

µ(s)∥ψρζ
t∥2ds

)
−
∫ ∞

0

µ′(s)∥ψρζ
t∥2ds+ λ

∫
R3

ψ2
ρ|wt|2dx−

∫
R3

ψ2
ρwt∆wdx

−
∫
R3

ψ2
ρwt∆wtdx−

∫ ∞

0

µ(s)

∫
R3

ψ2
ρwt∆ζ

t(s)dxds+

∫
R3

ψ2
ρϕ(x,wt)wtdx

=

∫ ∞

0

µ(s)

∫
R3

ζt(s)ψ2
ρwtdxds−

∫
R3

ψ2
ρ(f0(x, u)− f0(x, v))wtdx

+

∫
R3

ψ2
ρ(h1 + λut − f1(x, u))wtdx.

Applying the Hölder, Young inequalities, and (4.24), we obtain∫ ∞

0

µ(s)

∫
R3

ψ2
ρζ

t(s)wtdxds ≤
∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|ζt(s)||wt|dxds

≤
∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|ζt(s)|2dxds+ k

∫
R3

ψ2
ρ|wt|2dx,∫

R3

ψ2
ρwt∆wdx = −1

2

d

dt

∫
R3

ψ2
ρ|∇w|2dx−

∫
R3

∇ψ2
ρwt∇wdx

≤ −1

2

d

dt

∫
R3

ψ2
ρ|∇w|2dx+

π

ρ+ 1
∥wt∥∥∇w∥

≤ −1

2

d

dt

∫
R3

ψ2
ρ|∇w|2dx+

C

ρ+ 1
,

and ∫
R3

ψ2
ρwt∆wtdx = −

∫
R3

ψ2
ρ|∇wt|2dx−

∫
R3

∇ψ2
ρwt∇wtdx

≤ −
∫
R3

ψ2
ρ|∇wt|2dx+

π

ρ+ 1

∫
R3

ψρ|wt||∇wt|dx

≤ −
∫
R3

ψ2
ρ|∇wt|2dx+

π2

4(ρ+ 1)2
∥wt∥2
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≤ −
∫
R3

ψ2
ρ|∇wt|2dx+

C

ρ+ 1
.

Note that h1(x, t) = 0 for m ∈ R, |x| ≥ r + 1, so we get
∫
R3 ψ

2
ρh1wtdx = 0.

Applying Lemma 4.10 and (4.15), we obtain∫
R3

ψ2
ρf1(x, u)wtdx ≤ C

∫
R3

ψ2
ρ(|v|+ |w|)|wt|dx

≤ C

∫
R3

ψ2
ρ|wt|2dx+ C

∫
R3

ψ2
ρ|w|2dx+ aω,∫

R3

ψ2
ρλutwtdx =

∫
R3

ψ2
ρλvtwtdx+

∫
R3

ψ2
ρλ|wt|2dx

≤ C

∫
R3

ψ2
ρ|wt|2dx+ a

∫
R3

ψ2
ρ|vt|2dx

≤ C

∫
R3

ψ2
ρ|wt|2dx+ aω,

and∫ ∞

0

µ(s)

∫
R3

ψ2
ρwt∆ζ

t(s)dxds

= −
∫ ∞

0

µ(s)

∫
R3

∇ψ2
ρwt∇ζt(s)dxds−

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ∇wt∇ζt(s)dxds

≤ π

ρ+ 1

∫ ∞

0

µ(s)

∫
R3

ψρ|wt||∇ζt(s)|dxds−
1

2

d

dt

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds

+

∫ ∞

0

µ′(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds

≤ π2

4(ρ+ 1)2
∥wt∥2 +

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds

− 1

2

d

dt

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds

≤ C

ρ+ 1
+

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds

− 1

2

d

dt

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds,

where ∫ ∞

0

µ′(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds ≤ 0.

Using (1.6) and (4.24) and Lemma 2.1 we get∫
R3

ψ2
ρ(f0(x, u)− f0(x, v))wtdx

≤ C(1 + ∥u∥41 + ∥v∥41)∥ψρw∥1∥ψρwt∥1



STRONGLY DAMPED WAVE EQUATIONS WITH MEMORY 823

≤
∫
R3

ψ2
ρ|∇wt|2dx+ C

∫
R3

ψ2
ρ|∇w|2dx+

C

ρ+ 1
,

and ∫
R3

ψ2
ρϕ(x,wt)wtdx ≥ 0.

Summarizing, we arrive at

d

dt
y(t) ≤ Cy(t) +

C

ρ+ 1
+ 2aω,

where

y(t) =

∫
R3

ψ2
ρ|wt|2dx+

∫
R3

ψ2
ρ(λ|w|2+|∇w|2)dx+

∫ ∞

0

µ(s)ψ2
ρ(∥ζt∥2+∥∇ζt∥2)ds.

Applying the Gronwall lemma on [0, Tω], recall that y(0) = 0, we obtain

y(Tω) ≤ Tωe
CTω

(
C

ρ+ 1
+ aω

)
.

We can easily see that

∥ψρwt∥2 + ∥ψρw∥21 + ∥ψρζ
t(s)∥21,µ

≤ Cy(Tω) +

∫
R3

|∇ψρ|2|∇w(Tω)|2dx+

∫ ∞

0

µ(s)

∫
R3

|∇ψρ|2|∇ζTω (s)|2dxds.

On the other hand, using (4.27), we get∫
R3

|∇ψρ|2|∇w(Tω)|2dx+

∫ ∞

0

µ(s)

∫
R3

|∇ψρ|2|∇ζTω (s)|2dxds ≤ C

ρ+ 1
.

Thus, we conclude that

∥ψρwt∥2 + ∥ψρw∥21 + ∥ψρζ
t(s)∥21,µ ≤ C

ρ+ 1
+
ω

2

for fixed C = C(ω), independent of ρ, and a small enough. Choosing ρ ≥ rω
large enough such that C

ρ+1 ≤ ω
2 we are done. □

To state the next lemma, which provides the compact part in the decompo-
sition of the solution, some definitions are needed. Let B ⊂ R3 be a smooth
bounded domain. Define the linear operator

Aw = −∆w, D(A) = H2(B) ∩H1
0 (B).

Moreover, introduce the Hilbert spaces Vα = D(Aα/2), endowed with the inner
products ⟨·, ·⟩ = ⟨Aα/2, Aα/2⟩ and norms ∥ · ∥α. Putting Hν+1 = Vν+1 × V1 ×
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L2
µ(R+, Vν+1) for 0 ≤ ν. By virtue of Lemma 4.11, any solution w of (4.18)

solves the Dirichlet problem on a fixed bounded domain

(4.30)



wtt +Awt +Aw +

∫ ∞

0

µ(s)Aζt(s)ds

+ f0(x, u)− f0(x, v) + ϕ(x,wt)

= h1 + λvt − λw − f1(x, u) on B(R)× [0, Tω],

∂tζ = −∂sζ + wt,

(w,wt, ζ
t)|∂B(R) = 0,

(w(0), wt(0), ζ
0) = (0, 0, 0).

To prove the compactness of S(t), we replace (1.8) with the more restrictive
assumption as follows:

(4.31) |g′m(x,m)| ≤ C(1 + |m|p−1), 1 ≤ p < 5, |g′x(x,m)| ≤ C|m|p.

Lemma 4.12. There exists a positive constant Nω > 0 such that the solution
w to (4.30) at time Tω, corresponding to r = rω, fulfills the inequality

(4.32) ∥(w(t), wt(t), ζ
t)∥2Hν+1

≤ Nω

for every z0 ∈ H1 and 0 < ν < 1
2 .

Proof. Multiplying the first equation of (4.30) by Aνwt(t), we have

d

dt

(
∥wt∥2ν + ∥w∥2ν+1 + ∥ζt∥2ν+1,µ

)
− 2

∫ ∞

0

µ′(s)∥ζt(s)∥2ν+1ds+ 2∥wt∥2ν+1

≤ − 2⟨f0(x, u)− f0(x, v), A
νwt⟩ − 2⟨ϕ(x,wt), A

νwt⟩
+ 2⟨h1 + λvt + λw − f1(x, u), A

νwt⟩.

On the other hand, using (4.24) and the embedding H1
0 (B(R)) ↪→ L6(B(R))

and D(A
1−ν
2 ) ↪→ L

6
3−2(1−ν) (B(R)), we have

2⟨ϕ(x,wt), A
νwt⟩ ≤ C∥wt∥p

L
6p

5−2ν

∥Aνwt∥
L

6
3−2(1−ν)

≤ C∥wt∥p1∥wt∥ν+1

≤ 1

4
∥wt∥2ν+1 + C.

Using (4.1), the condition (1.7) and ν < ν+1
2 as 0 < ν < 1, we get

2⟨f0(x, u)− f0(x, v), A
νwt⟩

≤ C

∫
B(R)

(1 + |u|4 + |v|4)|w||Aνwt|dx

≤ C

(∫
B(R)

(1 + |u|4 + |v|4) 3
2 dx

) 2
3
(∫

B(R)

|w|
6

3−2(1+ν) dx

) 3−2(1+ν)
6
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×

(∫
B(R)

|Aνwt|
6

3−2(1−ν) dx

) 3−2(1−ν)
6

≤ C(1 + ∥u∥4L6 + ∥v∥4L6)∥w∥
L

6
3−2(1+ν)

∥Aνwt∥
L

6
3−2(1−ν)

≤ C(1 + ∥u∥41 + ∥v∥41)∥w∥ν+1∥wt∥ν+1

≤ 1

4
∥wt∥2ν+1 + C(ρ1)∥w∥2ν+1,

and

2⟨q,Aνwt⟩ ≤ 2∥q∥∥Aνwt∥

≤ 1

2
∥wt∥2ν+1 + C, where q = h1 + λvt + λw − f1(x, u).

Notice that −
∫∞
0
µ′(s)∥ζt(s)∥2ν+1ds ≥ 0, so we can omit this term in the above

inequality. Thus,

d

dt

(
∥wt∥2ν + 2∥w∥2ν+1 + ∥ζt∥2ν+1,µ

)
≤ C

(
∥wt∥2ν + 2∥w∥2ν+1 + ∥ζt∥2ν+1,µ

)
+ C.

Hence, the conclusion is drawn from the Gronwall lemma. □

In addition, for any ζ0 ∈ L2
µ(R+, H1), the Cauchy problem (see e.g. [2, 16]){

∂tζ
t = −∂sζt + wt, t > 0,

ζ0 = ζ0 = 0,

has a unique solution ζt ∈ C((0,∞);L2
µ(R+, H1)), and

ζt(s) =

{
w(t)− w(t− s), 0 < s ≤ t,

ζ0(s− t)− ζ0(0) + w(t)− w(0), s > t.

Thus, thanks to ζ0(x, s) = 0, we have

(4.33) ζt(s) =

{
w(t)− w(t− s), 0 < s ≤ t,

w(t), s > t.

Let B0 be the bounded absorbing set obtained in Lemma 4.3, we now prove
the following result.

Lemma 4.13. Setting
KT = PS2(T )B0

for T > 0 large enough, where {S2(t)}t≥0 is the solution process of (4.30),
P : H1

0 (B(R)) × L2(B(R)) × L2
µ(R+, H1

0 (B(R))) → L2
µ(R+, H1

0 (B(R))) is the
projection operator. Then there is a positive constant N1 = N1(∥B0∥H1

) such
that

(1) KT is bounded in L2
µ(R+, Vν+1) ∩H1

µ(R+;H1
0 (B(R))),

(2) supξ∈KT
∥ξ(s)∥2

H1
0 (B(R))

≤ N1.

Moreover, KT is relatively compact in L2
µ(R+, H1

0 (B(R))).
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Proof. From (4.33) we have

∂sξ
tε(s) =

{
w(t− s), 0 < s ≤ t,

0, s > t,

which, combining with Lemma 4.12, implies claim (1).
After that, using (4.33) once again, we can easily deduce that

∥ξT (s)∥2H1
0 (B(Rω))

≤

{∫ s

0
∥w(T − r)∥2

H1
0 (B(Rω))

dr ≤
∫ T

0
∥w(T − r)∥2

H1
0 (B(Rω))

dr, 0 < s ≤ T,∫ T

0
∥w(T − r)∥2

H1
0 (B(Rω))

dr, s > T.

By virtue of (4.32), we know that claim (2) holds. Because Vν+1 ↪→ H1
0 (B(Rω))

compactly, we conclude that KT is relatively compact in L2
µ(R+, H1

0 (B(Rω)))
thanks to the following lemma. □

Lemma 4.14 (see [16]). Assume that µ ∈ C1(R+) ∩ L1(R+) is a nonnegative
function and satisfies the condition: if there exists s0 ∈ R+ such that µ(s0) = 0,
then µ(s) = 0 for all s ≥ s0. Moreover, let X0, X1, X2 be Banach spaces, here
X0, X2 are reflexive and satisfy

X0 ↪→ X1 ↪→ X2,

where the embedding X0 ↪→ X1 is compact. Let C ⊂ L2
µ(R+, X1) satisfy

(1) C is a subset in L2
µ(R+, X0) ∩H1

µ(R+, X2);

(2) supη∈C ∥η(s)∥2X1
≤ h(x, s),∀s ∈ R+, where h ∈ L1

µ(R+).

Then C is relatively compact in L2
µ(R+, X1).

Proof of Theorem 4.1. By Lemma 4.3, the family of semigroup S(t) has a
bounded absorbing B0 in H1. Moreover, S(t) is global asymptotically compact
in H1 due to Lemmas 4.10, 4.12 and 4.13. Therefore, the family of semigroup
S(t) has the global attractor A in H1. □

In the next sections, we will prove the existence of exponential attractors of
equation (1.1). This requires that the solutions of system (1.1) have higher-
order regularity, on this account, we need to show that u(t) and ηt are bounded
in H2.

4.3. Higher-order regularity

From Theorem 4.1, we immediately obtain the following regularity result.

Lemma 4.15. The attractor A is bounded in Hν+1 for all 1
4 ≤ ν < 1

2 .

To prove A is bounded in H2, we argue as follows. For z0 ∈ A, we split the
solution S(t)z0 = z(t) into the sum S1(t)z0+S2(t)z0, where S1(t)z0 = v(t) and
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S2(t)z0 = w(t), instead of (4.17) and (4.18) solving, respectively,
∂ttv−∆∂tv+λvt−∆v+λv−

∫ ∞

0

µ(s)∆ξt(s)ds+ϕ(x, ut)−ϕ(x,wt) = h0,

∂tξ
t = −∂sξt + vt,

(v(0), vt(0), ξ
0) = z0,

and

(4.34)


∂ttw −∆∂tw + λwt −∆w + λw −

∫ ∞

0

µ(s)∆ζt(s)ds

+ f(x, u) + ϕ(x,wt) = h1 + λut,

∂tζ = −∂sζ + wt,

(w(0), wt(0), ζ
0) = (0, 0, 0).

As the particular case of Lemma 4.10, we know that

(4.35) ∥S1(t)z0∥2H1
≤ Ce−γt + ω for all t ≥ 0.

Besides, as in Lemmas 4.3, 4.6 and 4.7, we also obtain

(4.36) ∥u∥21 + ∥v∥21 + ∥w∥21 + ∥ut∥21 + ∥vt∥21 + ∥wt∥21 + ∥ηt(s)∥21,µ + ∥wtt∥2 ≤ C.

Lemma 4.16. There exist Tω > 0 and ρ ≥ rω such that the solution w to
(4.34) at time Tω, corresponding to r = rω, fulfills the inequality

∥ψρw∥22 + ∥ψρwt∥21 + ∥ψρζ
t∥22,µ ≤ ω, ∀t ≥ Tω.

Proof. Taking the product in H0 of (4.18) and −ψ2
ρ∆wt, we get

1

2

d

dt

(∫
R3

ψ2
ρ|∇wt|2dx+

∫
R3

ψ2
ρ|∆w|2dx+

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∆ζt(s)|2dxds

)
+

∫
R3

ψ2
ρ|∆wt|2dx+ λ

∫
R3

ψ2
ρ|∇wt|2dx−

∫ ∞

0

µ′(s)

∫
R3

ψ2
ρ|∆ζt(s)|2dxds

+

∫
R3

∇ψ2
ρwtt∇wtdx−

∫
R3

ψ2
ρϕ(x,wt)∆wtdx−

∫
R3

ψ2
ρf(x, u)∆wtdx

= −λ
∫
R3

∇ψ2
ρwt∇wtdx− λ

∫
R3

∇ψ2
ρw∇wdx− λ

∫
R3

ψ2
ρ∇w∇wtdx

+

∫
R3

ψ2
ρ(h1 + λut)∆wtdx.(4.37)

Applying the Hölder, Young inequalities and (4.36), we obtain∫
R3

∇ψ2
ρwtt∇wtdx ≤ π

ρ+ 1

∫
R3

ψρ|wtt||∇wt|dx

≤
∫
R3

ψ2
ρ|∇wt|2dx+

C

(ρ+ 1)2
∥wtt∥2

≤
∫
R3

ψ2
ρ|∇wt|2dx+

C

ρ+ 1
,
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−λ
∫
R3

∇ψ2
ρwt∇wtdx ≤ π

ρ+ 1

∫
R3

ψρ|wt||∇wt|dx

≤
∫
R3

ψ2
ρ|∇wt|2dx+

C

ρ+ 1
,

−λ
∫
R3

∇ψ2
ρw∇wdx ≤ π

ρ+ 1

∫
R3

ψρ|w||∇w|dx

≤ C

ρ+ 1
,

−2λ

∫
R3

ψ2
ρ∇w∇wtdx ≤

∫
R3

ψ2
ρ|∇wt|2dx+ λ2

∫
R3

ψ2
ρ|∇w|2dx.

Note that h1(x, t) = 0 for m ∈ R, |x| ≥ r+1, we get
∫
R3 ψ

2
ρh1wtdx = 0. Using

(4.35) and (4.36), we obtain

−2λ

∫
R3

ψ2
ρut∆wtdx ≤ 2

∫
R3

∇ψ2
ρ|ut||∇wt|dx+ 2

∫
R3

ψ2
ρ|∇ut||∇wt|dx

≤ 2π

ρ+ 1

∫
R3

ψρ|ut||∇wt|dx+ 2

∫
R3

ψ2
ρ|∇(vt + wt)||∇wt|dx

≤ 2

∫
R3

ψ2
ρ|∇wt|2dx+

∫
R3

ψ2
ρ|∇vt||∇wt|dx+

C

ρ+ 1

≤ 3

∫
R3

ψ2
ρ|∇wt|2dx+ ω +

C

ρ+ 1
.

Applying (4.36), Lemma 4.15 and noting that D(A
ν+1
2 ) ↪→ L12, 1

4 ≤ ν < 1, we

deduce that ∥u∥12L12 ≤ ∥u∥12Hν+1
≤ C.

−
∫
R3

ψ2
ρf(x, u)∆wtdx

≤
∫
R3

ψ2
ρ|f ′u(x, u)||∇u||∇wt|dx+

∫
R3

ψ2
ρ|f ′x(x, u)||∇wt|dx

+

∫
R3

∇ψ2
ρ|f(x, u)||∇wt|dx

≤ C

∫
R3

ψ2
ρ(1 + |u|4)|∇(v + w)||∇wt|dx+ C

∫
R3

ψ2
ρ|(v + w)|5|∇wt|dx

+ C

∫
R3

∇ψ2
ρ(1 + |u|5)|∇wt|dx

≤ Cω +
1

2

∫
R3

ψ2
ρ|∆wt|2dx+ C

∫
R3

ψ2
ρ|∇wt|2dx+ C

∫
R3

ψ2
ρ|∇w|2dx+

C

ρ+ 1
.

Using (4.31), (4.36), and since −
∫
R3 ψ

2
ρϕ

′
wt
(x,wt)|∇wt|2dx ≤ 0, we have

−
∫
R3

ψ2
ρϕ(x,wt)∆wtdx =

∫
R3

ψ2
ρϕ

′
wt
(x,wt)|∇wt|2dx+

∫
R3

ψ2
ρϕ

′
x(x,wt)|∇wt|dx
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+

∫
R3

∇ψ2
ρϕ(x,wt)∇wtdx

≤ C

∫
R3

ψ2
ρ|wt|p|∇wt|dx+

C

ρ+ 1

∫
R3

ψρ|wt|4|∇wt|dx

≤ 1

4

∫
R3

ψ2
ρ|∆wt|2dx+ C

∫
R3

ψ2
ρ|∇wt|2dx+

C

ρ+ 1
.

Plugging all the above inequalities into (4.37), it follows that

d

dt
y(t) ≤ Cy(t) + C

(
1

ρ+ 1
+ ω

)
,

where

y(t) =

∫
R3

ψ2
ρ|∇wt|2dx+

∫
R3

ψ2
ρ|∆w|2dx+

∫ ∞

0

µ(s)ψ2
ρ∥∆ζt∥2ds.

Applying the Gronwall lemma on [0, Tω], and recalling that y(0) = 0, we obtain

(4.38) y(Tω) ≤ CTωe
CTω

(
1

ρ+ 1
+ ω

)
.

Combining (4.38) and Lemma 4.11, we conclude that

∥ψρwt∥21 + ∥ψρw∥22 + ∥ψρζ
t(s)∥22,µ ≤ Cω

for fixed C = C(R), independent of ρ. □

Lemma 4.17. Under the assumptions (H1)–(H4) (in (H3), (1.8) is replaced
by (4.31)), the following estimate holds:

(4.39) ∥S2(t)z0∥2H2
≤M0

for some M0 > 0.

Proof. For a ∈ [0, 1) to be fixed later, multiplying the first equation of (4.34)
by wt(t)− aw(t) in L2(R3), and adding to both sides the term

d

dt

∫ ∞

0

µ(s)∥ζt∥2ds− 2

∫ ∞

0

µ′(s)∥ζt∥2ds = 2

∫ ∞

0

µ(s)⟨ζt(s), wt⟩ds,

and as in the proof of Lemma 4.12, we get

(4.40) ∥(w,wt, ζ
t)∥2H1

≤ N for some N > 0.

Besides, multiplying the first equation of (4.34) by−∆wt(t)−a∆w(t) in L2(R3),
we obtain

1

2

d

dt

(
∥∇wt∥2 + (1 + a)∥∆w∥2 + λ(1 + a)∥∇w∥2

+

∫ ∞

0

µ(s)∥∆ζt∥2ds+ 2a⟨∇wt,∇w⟩

)
+ (λ− a)∥∇wt∥2 + ∥∆wt∥2 + aλ∥∇w∥2 + a∥∆w∥2
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+ a

∫ ∞

0

µ(s)⟨∆ζt,∆w⟩ds−
∫ ∞

0

µ′(s)∥∆ζt(s)∥2ds

+ ⟨f(x, u),−∆wt − a∆w⟩+ ⟨ϕ′wt
(x,wt)∇wt,∇wt⟩

= − a⟨ϕ′wt
(x,wt)∇wt,∇w⟩ − ⟨ϕ′x(x,wt),∇wt + a∇w⟩

+ ⟨h1 + λut,−∆wt − a∆w⟩.(4.41)

Applying Lemma 4.2, we have

d

dt
aΨ(t) + a

∫ ∞

0

µ(s)∥∆ζt(s)∥2ds = 2a

∫ ∞

0

µ(s)⟨∆ζt(s),∆w⟩ds

≤ 2a

∫ ∞

0

µ(s)∥∆ζt∥∥∆w∥ds

≤ a
1
2

∫ ∞

0

µ(s)∥∆ζt∥2ds+ a
3
2 ∥∆w∥2.(4.42)

Using Lemma 4.15 and Sobolev embedding D(A
ν+1
2 ) ↪→ L10, 1

5 ≤ ν < 1, we
deduce that

∥u∥10L10 ≤ ∥u∥10Hν+1
≤ C,

1

5
≤ ν < 1.

Therefore

a⟨f(x, u),−∆wt − a∆w⟩ ≤ C(1 + ∥u∥5L10)(∥∆wt∥+ a∥∆w∥)

≤ 1

2
∥∆wt∥2 + a2∥∆w∥2 + C.

Exploiting Lemma 2.1 and (4.31), (4.40), we get

−a⟨ϕ′wt
(x,wt)∇wt,∇w⟩ ≤ Ca∥ϕ′wt

(x,wt)∥L3/2∥∇wt∥L6∥∇w∥L6

≤ 1

4
(∥∆wt∥2 + a2∥∆w∥2) + C,

−⟨ϕ′x(x,wt),∇wt + a∇w⟩ ≤ ∥ϕ′x(x,wt)∥2L6/5 +
1

4
(∥∆wt∥2 + a2∥∆w∥2)

≤ 1

4
(∥∆wt∥2 + a2∥∆w∥2) + C,

and

⟨ϕ′wt
(x,wt)∇wt,∇wt⟩ ≥ 0.

Finally,

⟨h1 + λut,−∆wt − a∆w⟩ ≤ 1

4
∥wt∥22 + a2∥w∥22 + C.

Putting

Λ(t) = ∥∇wt∥2 + (1 + a)∥∆w∥2 + λ(1 + a)∥∇w∥2 +
∫ ∞

0

µ(s)∥∆ζt∥2ds

+ 2a⟨∇wt,∇w⟩+ aΨ(t),
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we get

∥∇wt∥2 + ∥∆w∥2 + λ∥∇w∥2 +
∫ ∞

0

µ(s)∥∆ζt∥2ds

≤ Λ(t)

≤ 2

(
∥∇wt∥2 + ∥∆w∥2 + λ∥∇w∥2 +

∫ ∞

0

µ(s)∥∆ζt∥2ds
)
.

Summation of (4.41) and (4.42) and then combining all the above inequalities,
we arrive at

d

dt
Λ(t) + αΛ(t) +

1

4
∥∆wt∥2 ≤ C.(4.43)

By the Gronwall lemma, and using (4.36) and Lemma 4.2, we can get (4.35)
immediately. This completes the proof. □

Now, we have the following lemma.

Lemma 4.18. For any bounded set B in H2, the following estimate holds:

(4.44) sup
t≥0

sup
z0∈B

∥∥(u(t), ut(t), ηt(s))∥∥H2
≤ C.

Moreover, for every t1, t2 > 0, we have

(4.45)

∫ t2

t1

∥∆ut(r)∥2dr ≤ C.

Proof. Let z = (u, ut, η
t) be a solution of (1.1) with initial data z0 ∈ B. Now

recasting the proof of Lemma 4.17, we end up with an inequality analogous
to (4.43) and (u, ut, η

t) in place of (w,wt, ζ
t). Since the initial data belong to

B ∈ H2, applying the Gronwal lemma, we obtain (4.44). Besides, integrating
(4.43) from t1 to t2 and using (4.44) we get (4.45). □

We have the following regularity result.

Theorem 4.19 (Regularity of the global attractor). Under the assumptions of
(H1)–(H4) (with (1.8) by (4.31)) for the memory term and the nonlinearity,
and the assumption of (4.35), the global attractor A is bounded in H2.

Next, we can take a compact set B1 ⊂ H2, such that B = ∪t≥Tω
S(t)B1 is a

compact positive invariant set in H2 under S(t).

5. Exponential attractors

Despite the existence of an exponentially attracting set, quantitative infor-
mation on the attraction rate of the global attractor is usually very hard to find.
To overcome this difficulty, it was introduced in [12] the concept of exponential
attractor.

Definition 5.1. A compact set E ∈ H1 is called an exponential attractor or
inertial set for the semigroup S(t) if the following conditions hold:
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(1) E is positively invariant, i.e., S(t)E ⊂ E for every t ≥ 0;
(2) E has finite fractal dimension in H1;
(3) E is exponentially attracting for S(t).

Recall that the fractal dimension of a compact set K in a metric space X is
defined by

(5.1) dimX K = lim sup
ε→0

logN(ε,K)

log(1/ε)
,

where N(ε,K) is the smallest number of balls of radius ε necessary to cover
K. The main result of this section is the following.

Theorem 5.2. The semigroup S(t) acting on H1 possesses an exponential
attractor E contained and bounded in H2.

As a byproduct, we have the following.

Corollary 5.3. The global attractor A of S(t) has a finite fractal dimension
in H1.

Now, we will make use of the projections P1 and P2 of H1 onto its compo-
nents H1 ×H0 and L2

µ(R+, H1), namely

P1(z) = P1(u, ut, η
t) = (u, ut), P2(z) = P2(u, ut, η

t) = ηt.

Lemma 5.4. Let the following assumptions hold:

(1) There exists R⋆ > 0 such that the ball B⋆ = BH2
(R⋆) is exponentially

attracting.
(2) There exists R1 > 0 with the following property: for any given R ≥ 0,

there exists a nonnegative function ψ vanishing at infinity such that

∥S(t)z0∥H2
≤ ψ(t) +R1

for all z0 ∈ B(R).
(3) For every R ≥ 0 and every θ > 0 sufficiently large,∫ 2θ

θ

∥∂t(u(t), ∂tu(t))∥2H1×H0
dt ≤ Q(R+ θ)

for all (u, ut) = P1S(t)z0.
(4) For every fixed R ≥ 0, the semigroup S(t) : B → B admits a decom-

position of the form S(t) = S1(t) + S2(t) satisfying for all initial data
z0i ∈ B(R),

∥S1(z01)− S1(z02)∥H1
≤ ψ(t)∥z01 − z02∥H1

,

and
∥S2(z01)− S2(z02)∥H2

≤ Q(t)∥z01 − z02∥H1

for both Q and the nonnegative function ψ vanishing at infinity. More-
over, the function

η̄t = P2S2(t)z01 − P2S2(t)z02
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fulfills the Cauchy problem

∂tη̄
t = ∂sη̄

t + w̄t(t), η̄0 = 0

for some w̄ satisfying the estimate

∥w̄(t)∥1 ≤ Q(t)∥z01 − z02∥H1
.

Then, S(t) possesses an exponential attractor E contained in the ball B(R1).

Proof of Theorem 5.2. The proof amounts to verifying the four points of the
above Lemma 5.4. Indeed, combining (4.35), Lemma 4.16 and Lemma 4.17
we get (1) and (2). Besides, (3) is an immediate consequence of Lemma 4.6.
Accordingly, we are left to show the validity of (4).

For every initial data z0 = (u0, v0, η0) ∈ B, denote S1(t)z0 = z1(t) the
solution at time t to the linear homogeneous problem

∂ttv −∆∂tv −∆v + λv −
∫ ∞

0

µ(s)∆ξt(s)ds = 0,

∂tξ
t = −∂sξt + vt,

(v(0), vt(0), ξ
0) = z0,

and let

S2z0 = S1(t)z0 − S(t)z0 = z2(t).

Let R ≥ 0 be fixed, and let z01, z02 ∈ B. We decompose the difference(
ū(t), ūt(t), η̄

t
)
= S(t)z01 − S(t)z02 =

(
v̄(t), v̄t(t), ξ̄

t) + (w̄(t), w̄t(t), ζ̄
t
)
,

where

(v̄(t), v̄t(t), ξ̄
t) = S1(t)z01 − S1(t)z02, (w̄(t), w̄t(t), ζ̄

t) = S2(t)z01 − S2(t)z02

solve the problems
∂ttv̄ −∆∂tv̄ −∆v̄ + λv̄ −

∫ ∞

0

µ(s)∆ξ̄t(s)ds = 0,

∂tξ
t = ∂sξ

t + vt,

(v(0), vt(0), ξ
0) = z01 − z02,

and

(5.2)


∂ttw̄ −∆∂tw̄ −∆w̄ + λw̄ −

∫ ∞

0

µ(s)∆ζ̄t(s)ds

+ f(x, u1)− f(x, u2) + g(x, ∂tu1)− g(x, ∂tu2) = 0,

∂tζ = ∂sζ + w,

(w(0), wt(0), ζ
0) = (0, 0, 0).

We first note that, on account of (2),

∥S(t)z0i∥H2
≤ C.
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On the other hand, as the particular case of Lemma 4.10, we get

∥S1(t)z01 − S1(t)z02∥H1 ≤ Ce−γt∥z01 − z02∥H1 .

Now, for a ∈ [0, 1) to be fixed later, multiplying the first equation of (5.2)
by w̄t(t)− aw̄(t) in L2(R3), and adding to both sides the term

d

dt

∫ ∞

0

µ(s)∥ζ̄t∥2ds− 2

∫ ∞

0

µ′(s)∥ζ̄t∥2ds = 2

∫ ∞

0

µ(s)⟨ζ̄t(s), w̄t⟩ds,

and as in the proof of Lemma 4.12, we get

∥(w̄, w̄t, ζ̄
t)∥2H1

≤ N0 for some N0 > 0.

Next, multiplying the first equation of (5.2) by −∆w̄t(t)− a∆w̄(t) in L2(R3),
we obtain

1

2

d

dt

(
∥∇w̄t∥2 + (1 + a)∥∆w̄∥2 + λ∥∇w̄∥2

+

∫ ∞

0

µ(s)∥∆ζ̄t∥2ds+ 2a⟨∇w̄t,∇w̄⟩
)

− a∥∇w̄t∥2 + ∥∆w̄t∥2 + aλ∥∇w̄∥2 + a∥∆w̄∥2

+ a

∫ ∞

0

µ(s)⟨∆ζ̄t(s),∆w̄⟩ds−
∫ ∞

0

µ′(s)∥∆ζ̄t(s)∥2ds

= − ⟨f(x, u1)− f(x, u2),−∆w̄t − a∆w̄⟩
− ⟨g(x, ∂tu1)− g(x, ∂tu2),−∆w̄t − a∆w̄⟩.

Due to (1.8) and the Agmon’s inequality,

∥g(x, ∂tu1)− g(x, ∂tu2)∥ ≤ C∥∂tu1 − ∂tu2∥.

Thus

−⟨g(x, ∂tu1)− g(x, ∂tu2),−∆w̄t − a∆w̄⟩ ≤ C∥ūt∥∥w̄t + aw̄∥2.

Besides, by (1.6),

−⟨f(x, u1)− f(x, u2),−∆w̄t − a∆w̄⟩ ≤ C∥ū∥1∥w̄t + aw̄∥2.

A final application of the Hölder inequality entails

d

dt
Λ(t) ≤ αΛ(t) + C(∥ū∥21 + ∥ūt∥2),

where

Λ = ∥∇w̄t∥2 + (1 + a)∥∆w̄∥2 + λ∥∇w̄∥2 +
∫ ∞

0

µ(s)∥∆ζ̄t∥2ds+ 2a⟨∇w̄t,∇w̄⟩,

and ∥(w̄, w̄t, ζ̄
t)∥2H2

≤ Λ ≤ 2∥(w̄, w̄t, ζ̄
t)∥2H2

.
Arguing as in the proof of (3.22), we obtain

∥ū∥21 + ∥ūt∥2 ≤ CeCt∥z01 − z02∥2H1
.
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Since Λ(0) = 0, an application of the Gronwall lemma provides the sought
inequality

Λ(t) ≤ C

∫ t

0

eC(t−r)(∥ū(r)∥21 + ∥ūt(r)∥2)dr

≤ CeCt∥z01 − z02∥2H1
.

In particular, we learn that

∥(w̄, w̄t, ζ̄
t)∥2H2

≤ CeCt∥z01 − z02∥2H1
,

which is exactly the last point of (4) to be verified. □
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