ON THE EXISTENCE OF REAL QUADRATIC FIELDS WITH ODD PERIOD OF MINIMAL TYPE

TAKANOBU EGUCHI AND YASUHIRO KISHI

Abstract. In this paper, under the ABC-conjecture, we show that there exist infinitely many real quadratic fields with odd period of minimal type.

1. Introduction

In [3], Kawamoto and Tomita defined the notion of *real quadratic fields with* period ℓ of minimal type by using the simple continued fraction expansions of certain quadratic irrationals (see Definition in Section 2 below). Following that, they showed that there exist exactly 51 real quadratic fields of class number 1 that are not of minimal type, with one more possible exception ([3, Proposition 4.4]). This is a very interesting result. On the other hand, as for the existence of real quadratic fields of minimal type, the following have been known:

- Only $\mathbb{Q}(\sqrt{5})$ is a real quadratic field with period 1 of minimal type ([3, Example 3.4]).
- There are no real quadratic fields with period 2, 3 of minimal type ([3, Example 3.5]).
- There exist infinitely many real quadratic fields with period ℓ of minimal type for any even $\ell \geq 4$ ([3, Theorem 1.1], [2, Theorems 2, 3]).

Thus, we shall prove the following theorem by considering certain quadratic irrationals.

Theorem 1. Assume the ABC-conjecture. For each odd integer $\ell (\geq 5)$, there exist infinitely many real quadratic fields with period ℓ of minimal type.

Throughout this paper, we denote the ring of rational integers by \mathbb{Z} and the field of rational numbers by \mathbb{Q} , respectively. For any non-negative integer n, let F_n and L_n denote the Fibonacci and Lucas numbers, respectively, which are defined by

$$\begin{cases} F_0 = 0, \quad F_1 = 1, \quad F_n = F_{n-1} + F_{n-2} \ (n \ge 2), \\ L_0 = 2, \quad L_1 = 1, \quad L_n = L_{n-1} + L_{n-2} \ (n \ge 2). \end{cases}$$

Received October 6, 2023; Revised February 1, 2024; Accepted February 16, 2024. 2020 Mathematics Subject Classification. Primary 11R11, 11A55.

O2024Korean Mathematical Society

Key words and phrases. Real quadratic fields of minimal type, continued fractions.

T. EGUCHI AND Y. KISHI

2. Real quadratic fields of minimal type

In this section, we recall the definition of real quadratic fields of minimal type ([3, Theorem 3.1, Definition 3.1]).

Let $a_1, a_2, \ldots, a_{\ell-1}$ be a symmetric sequence of $\ell - 1 (\geq 1)$ positive integers. From this, we define nonnegative integers q_n and $r_n (0 \leq n \leq \ell)$ by

(2.1)
$$\begin{cases} q_0 = 0, \quad q_1 = 1, \quad q_n = a_{n-1}q_{n-1} + q_{n-2}, \\ r_0 = 1, \quad r_1 = 0, \quad r_n = a_{n-1}r_{n-1} + r_{n-2}, \end{cases}$$

inductively. For brevity, we put

(2.2)
$$A := q_{\ell}, \quad B := q_{\ell-1}, \quad C := r_{\ell-1},$$

and define polynomials g(x), h(x), f(x) by

(2.3) $g(x) = Ax - (-1)^{\ell} BC, \ h(x) = Bx - (-1)^{\ell} C^2, \ f(x) = g(x)^2 + 4h(x).$

Furthermore, let s_0 be the least integer x for which g(x) > 0, that is, $x > (-1)^{\ell} BC/A$. We consider three cases separately:

(I)
$$A \equiv 1 \pmod{2}$$
, (II) $(A, C) \equiv (0, 0) \pmod{2}$, (III) $(A, C) \equiv (0, 1) \pmod{2}$.

When Case (I) or Case (II) occurs, we let s be any integer with $s \ge s_0$, and put d := f(s)/4 and $a_0 := g(s)/2$. Here, we choose an even integer s in Case (I). Assume that

(2.4)
$$g(s) > a_1, \dots, a_{\ell-1}$$

holds. Then, d and a_0 are positive integers, d is non-square, $a_0 = \sqrt{d}$ and the simple continued fraction expansion of \sqrt{d} is

(2.5)
$$\sqrt{d} = [a_0, \overline{a_1, \dots, a_{\ell-1}, 2a_0}]$$

with minimal period ℓ . Also, in Case (III), there is no positive integer d such that (2.5) is the simple continued fraction expansion of \sqrt{d} .

When Case (I) or Case (III) occurs, we let s be any integer with $s \ge s_0$, and put d := f(s) and $a_0 := (g(s) + 1)/2$. Here, we choose an odd integer s in Case (I). Assume that (2.4) holds. Then, d and a_0 are positive integers, d is non-square, $d \equiv 1 \pmod{4}$, $a_0 = [(1 + \sqrt{d})/2]$ and the simple continued fraction expansion of $(1 + \sqrt{d})/2$ is

(2.6)
$$\frac{1+\sqrt{d}}{2} = [a_0, \overline{a_1, \dots, a_{\ell-1}, 2a_0 - 1}]$$

with minimal period ℓ . Also, in Case (II), there is no positive integer d such that $d \equiv 1 \pmod{4}$ and (2.6) is the simple continued fraction expansion of $(1 + \sqrt{d})/2$.

Conversely, let d be a non-square positive integer and put $\omega_d = \sqrt{d}$ or $\omega_d = (1 + \sqrt{d})/2$. Here we assume $d \equiv 1 \pmod{4}$ if $\omega_d = (1 + \sqrt{d})/2$. Then it is known that the simple continued fraction expansion is of the form

$$\omega_d = [a_0, \overline{a_1, a_2, \dots, a_\ell}],$$

where ℓ is the minimal period. Moreover, the sequence $a_1, a_2, \ldots, a_{\ell-1}$ is symmetric. From this, we get the quadratic polynomial f(x) and the integer s_0 as above. Then d becomes uniquely of the form d = f(s)/4 with some integer $s \ge s_0$, and (2.4) holds. If $d \equiv 1 \pmod{4}$ in addition, then the same thing is true for $(1 + \sqrt{d})/2$.

Definition ([3, Definition 3.1]). Let d be a non-square positive integer. As we stated above, d is uniquely of the form d = f(s)/4 with some integer $s \ge s_0$, where f(x) and s_0 are obtained as above from the symmetric part $a_1, a_2, \ldots, a_{\ell-1}$ of the simple continued fraction expansion of \sqrt{d} and ℓ is the minimal period. If $s = s_0$, that is, $d = f(s_0)/4$ holds, then we say that d is a *positive integer with period* ℓ of minimal type for \sqrt{d} . When $d \equiv 1 \pmod{4}$ in addition, d is uniquely of the form d = f(s) with some integer $s \ge s_0$, where f(x) and s_0 are obtained as above from the symmetric part $a_1, a_2, \ldots, a_{\ell-1}$ of the simple continued fraction expansion of $(1 + \sqrt{d})/2$ and ℓ is the minimal period. If $s = s_0$, that is, $d = f(s_0)$ holds, then we say that d is a *positive integer with period* ℓ of minimal type for $(1 + \sqrt{d})/2$.

Furthermore, for a square-free positive integer d > 1, we say that $\mathbb{Q}(\sqrt{d})$ is a real quadratic field with period ℓ of minimal type, if d is a positive integer with period ℓ of minimal type for \sqrt{d} when $d \equiv 2, 3 \pmod{4}$, and if d is a positive integer with period ℓ of minimal type for $(1 + \sqrt{d})/2$ when $d \equiv 1 \pmod{4}$.

3. Properties of Fibonacci and Lucas numbers

There are many properties of Fibonacci and Lucas numbers (see, for example, [5]). We list them which we need in the proof of our theorems.

Lemma 1. For any $n, m \in \mathbb{Z}$ with n > m > 0, we have

(3.1)
$$F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}$$

(3.2)
$$F_{n-1}F_{n+1} - F_n^2 = (-1)^n,$$

(3.3)
$$L_{n+m} - (-1)^m L_{n-m} = 5F_n F_m$$

(3.4)
$$F_n^2 + F_{n+1}^2 = F_{2n+1}$$

(3.5)
$$L_n^2 = 5F_n^2 + (-1)^n 4$$

and

$$(3.6) F_n \equiv 0 \pmod{2} \iff n \equiv 0 \pmod{3},$$

where $\alpha = (1+\sqrt{5})/2$, $\beta = (1-\sqrt{5})/2$. Moreover, if m is even (resp. m is odd), then we have

(3.7)
$$\frac{\overline{F_{n+1}}}{\overline{F_n}} < \frac{\overline{F_{m+1}}}{\overline{F_m}} \quad \left(resp. \ \frac{\overline{F_{m+1}}}{\overline{F_m}} < \frac{\overline{F_{n+1}}}{\overline{F_n}}\right).$$

4. Positive integers with odd period of minimal type

Let L be a positive integer with $L \ge 2$ and put $\ell = 2L + 1$. The goal of this section is to construct positive integers d with period ℓ of minimal type such that the symmetric part of the simple continued fraction expansion of \sqrt{d} or $(1 + \sqrt{d})/2$ is

$$\underbrace{1,\ldots,1}_{L-1}, F_L^2 u, F_L^2 u, \underbrace{1,\ldots,1}_{L-1}$$

with $u \in \mathbb{Z}$, u > 0. From this sequence, we get

$$q_n = F_n \ (0 \le n \le L), \quad q_{L+1} = F_L^3 u + F_{L-1},$$

$$r_n = F_{n-1} \ (1 \le n \le L), \quad r_{L+1} = F_L^2 F_{L-1} u + F_{L-2}$$

by using (2.1). Then by [4, Lemma 2.3], the integers A, B, C defined by (2.2) are given as

$$A = F_L^6 u^2 + 2F_L^3 F_{L-1} u + F_L^2 + F_{L-1}^2,$$

$$B = F_L^5 F_{L-1} u^2 + F_L^2 (F_{L-1}^2 + F_L F_{L-2}) u + F_{L-1} (F_L + F_{L-2}),$$

$$C = F_L^4 F_{L-1}^2 u^2 + 2F_L^2 F_{L-1} F_{L-2} u + F_{L-1}^2 + F_{L-2}^2.$$

Define the polynomials g(x), h(x) and f(x) as (2.3). Then the integer s_0 and the value of $f(s_0)$ are given as follows:

Proposition 1. Let the notation be as above.

(1) If L = 2, then

$$s_0 = -u^2 + u - 1,$$

 $f(s_0) = u^4 + 2u^3 + 3u^2 - 2u + 1.$

(2) If $L \geq 3$, then

$$\begin{split} s_0 &= -F_L^3 F_{L-1}^3 u^2 - F_{L-1}^2 (3F_L F_{L-2} - F_{L-1}^2) u - F_{L-2} (2F_{L-1} - F_{L-2}), \\ f(s_0) &= F_{L+1}^2 F_L^6 u^4 + 2F_{L+1} F_L^3 (F_{L+1}^2 - F_{L+1} F_L + F_L^2) u^3 \\ &\quad + (8F_{L+1}^2 F_L^2 - 6F_{L+1} F_L^3 + 1) u^2 - 2(F_{L+1}^2 - 5F_{L+1} F_L + F_L^2) u + 5. \end{split}$$

Proof. (1) Let L = 2. Then we have

$$A = u^{2} + 2u + 2, \quad B = u^{2} + u + 1, \quad C = u^{2} + 1.$$

Thus, s_0 is the least integer x for which

$$x > -\frac{(u^2+u+1)(u^2+1)}{u^2+2u+2}.$$

Hence by

$$\begin{aligned} -\frac{(u^2+u+1)(u^2+1)}{u^2+2u+2} &= -\frac{u^4+u^3+2u^2+u+1}{u^2+2u+2} = -u^2+u-2+\frac{u+3}{u^2+2u+2} \\ \text{and} \\ 0 &< \frac{u+3}{u^2+2u+2} < 1, \end{aligned}$$

we get $s_0 = -u^2 + u - 1$. From this, moreover, we have

$$g(s_0) = As_0 + BC = u^2 + u - 1,$$

 $h(s_0) = Bs_0 + C^2 = u^2,$

and

$$f(s_0) = g(s_0)^2 + 4h(s_0) = u^4 + 2u^3 + 3u^2 - 2u + 1.$$

(2) Let $L \geq 3$ and put

$$S := -F_L^3 F_{L-1}^3 u^2 - F_{L-1}^2 (3F_L F_{L-2} - F_{L-1}^2) u - F_{L-2} (2F_{L-1} - F_{L-2}).$$

First, we calculate $g(S)$. By straightforward calculations, we obtain

e calculate
$$g(S)$$
. By straightforward calculations, we obta

$$g(S) = AS + BC = c_2u^2 + c_1u + c_0,$$

where

$$\begin{split} c_2 &= F_L^8 - F_L^7 F_{L-1} - 3F_L^6 F_{L-1}^2 + F_L^5 F_{L-1}^3 + 3F_L^4 F_{L-1}^4 + F_L^3 F_{L-1}^5 \\ &= F_L^3 (F_L + F_{L-1}) (F_L^2 - F_L F_{L-1} - F_{L-1}^2)^2, \\ c_1 &= F_L^6 - F_L^5 F_{L-1} - 2F_L^4 F_{L-1}^2 - F_L^3 F_{L-1}^3 + 2F_L^2 F_{L-1}^4 + 3F_L F_{L-1}^5 + F_{L-1}^6 \\ &= (F_L^2 + F_L F_{L-1} + F_{L-1}^2) (F_L^2 - F_L F_{L-1} - F_{L-1}^2)^2, \\ c_0 &= F_L^4 - 2F_L^3 F_{L-1} - F_L^2 F_{L-1}^2 + 2F_L F_{L-1}^3 + F_{L-1}^4 \\ &= (F_L^2 - F_L F_{L-1} - F_{L-1}^2)^2. \end{split}$$

Here we remove F_{L-2} by substituting $F_{L-2} = F_L - F_{L-1}$. Now it follows from (3.2) that

(4.1)
$$F_L^2 - F_L F_{L-1} - F_{L-1}^2 = (F_L - F_{L-1})F_L - F_{L-1}^2$$
$$= F_{L-2}F_L - F_{L-1}^2 = (-1)^{L-1}.$$

Thus, we obtain

$$c_2 = F_L^3 (F_L + F_{L-1}),$$

$$c_1 = F_L^2 + F_L F_{L-1} + F_{L-1}^2,$$

$$c_0 = 1,$$

and hence,

(4.2)
$$g(S) = F_L^3 (F_L + F_{L-1}) u^2 + (F_L^2 + F_L F_{L-1} + F_{L-1}^2) u + 1$$
$$> F_L^3 (F_L + F_{L-1}) u^2 > F_L^2 u.$$

In particular, we have g(S) > 0. Next, we calculate g(S - 1). Also, straightforward calculations give

$$g(S-1) = A(S-1) + BC = g(S) - A = c'_2 u^2 + c'_1 u + c'_0,$$

where

$$\begin{split} c_2' &= F_L^3 (F_L + F_{L-1} - F_L^3), \\ c_1' &= F_L^2 + F_L F_{L-1} + F_{L-1}^2 - 2F_L^3 F_{L-1}, \end{split}$$

$$c_0' = 1 - F_L^2 - F_{L-1}^2.$$

Noting that $L \ge 3$, we can easily verify that all c'_i are negative. Let us explain that $c'_1 < 0$ holds for example. Since $L \ge 3$, we have $F_L > F_{L-1} \ge 1$ and $F_L > C_L$ $F_L \geq 2$. Then we have

$$c_1' = F_L^2 + F_L F_{L-1} + F_{L-1}^2 - 2F_L^3 F_{L-1}$$

$$< F_L^2 + F_L^2 + F_L^2 - 2F_L^3 = F_L^2 (3 - 2F_L) < 0.$$

Thus, we have g(S-1) < 0. Therefore, we get

$$s_0 = S = -F_L^3 F_{L-1}^3 u^2 - F_{L-1}^2 (3F_L F_{L-2} - F_{L-1}^2) u - F_{L-2} (2F_{L-1} - F_{L-2}).$$

Hence by $F_{L-2} = F_L - F_{L-1}, F_{L-1} = F_{L+1} - F_L$ and (4.1), we obtain

$$g(s_0) = F_L^3 F_{L+1} u^2 + (F_{L+1}^2 - F_{L+1} F_L + F_L^2) u + 1,$$

$$h(s_0) = F_L^2 F_{L+1} (F_{L+1} - F_L) u^2 + (-F_{L+1}^2 + 3F_{L+1} F_L - F_L^2) u + 1,$$

and

$$f(s_0) = F_{L+1}^2 F_L^6 u^4 + 2F_{L+1} F_L^3 (F_{L+1}^2 - F_{L+1} F_L + F_L^2) u^3 + (8F_{L+1}^2 F_L^2 - 6F_{L+1} F_L^3 + 1) u^2 - 2(F_{L+1}^2 - 5F_{L+1} F_L + F_L^2) u + 5.$$

roposition 1 is now proved.

Proposition 1 is now proved.

First, we consider the case L = 2. In this case, we have

$$A \equiv u \pmod{2},$$

$$C \equiv u + 1 \pmod{2},$$

$$s_0 \equiv 1 \pmod{2},$$

and hence, Case (III) occurs (resp. Case (I) occurs and s_0 is odd) if u is even (resp. u is odd). Moreover, if $u \ge 2$, then we have

$$g(s_0) = u^2 + u - 1 > u = F_2^2 u > 1.$$

Next, we consider the case $L \geq 3$. By using (3.6), we have

$$(F_L, F_{L-1}, F_{L-2}) \equiv \begin{cases} (0, 1, 1) \pmod{2} & \text{if } L \equiv 0 \pmod{3}, \\ (1, 0, 1) \pmod{2} & \text{if } L \equiv 1 \pmod{3}, \\ (1, 1, 0) \pmod{2} & \text{if } L \equiv 2 \pmod{3}. \end{cases}$$

Then we see that

$$A \equiv 1 \pmod{2} \iff \begin{cases} L \equiv 0 \pmod{3} \\ \text{or } ``L \equiv 1 \pmod{3}, u : \text{even''} \\ \text{or } ``L \equiv 2 \pmod{3}, u : \text{odd''}, \end{cases}$$
$$(A, C) \equiv (0, 0) \pmod{2} \quad \text{does not occur},$$
$$(A, C) \equiv (0, 1) \pmod{2} \iff \begin{cases} ``L \equiv 1 \pmod{3}, u : \text{odd''} \\ \text{or } ``L \equiv 2 \pmod{3}, u : \text{even''} \end{cases}$$

and

$$s_0 \equiv \begin{cases} 0 \pmod{2} & \text{if } ``L \equiv 0 \pmod{3}, u : \text{odd}" \text{ or } ``L \equiv 2 \pmod{3}, u : \text{odd}", \\ 1 \pmod{2} & \text{if } ``L \equiv 0 \pmod{3}, u : \text{even}" \text{ or } ``L \equiv 1 \pmod{3}, u : \text{even}" \end{cases}$$

The following table summarizes the above:

	$L \equiv 0 \pmod{3}$	$L \equiv 1 \pmod{3}$	$L \equiv 2 \pmod{3}$
u: even	Case (I), s_0 : odd	Case (I), s_0 : odd	Case (III)
u: odd	Case (I), s_0 : even	Case (III)	Case (I), s_0 : even

Moreover, by (4.2), we have

$$g(s_0) > F_L^2 u > 1.$$

Thus, it follows from what has been stated in Section 2 that the following holds:

Theorem 2. (1) For a positive integer u, put $d := u^4 + 2u^3 + 3u^2 - 2u + 1$. If $u \ge 2$, then d is a positive integer with period 5 of minimal type for $(1 + \sqrt{d})/2$ and the continued fraction expansion of $(1 + \sqrt{d})/2$ is of the form

$$(1 + \sqrt{d})/2 = [a_0, \overline{1, u, u, 1, 2a_0 - 1}],$$

where $a_0 = (u^2 + u)/2$.

(2) Let $L \geq 3$. For a positive integer u, put

$$d := F_{L+1}^2 F_L^6 u^4 + 2F_{L+1} F_L^3 (F_{L+1}^2 - F_{L+1} F_L + F_L^2) u^3 + (8F_{L+1}^2 F_L^2 - 6F_{L+1} F_L^3 + 1) u^2 - 2(F_{L+1}^2 - 5F_{L+1} F_L + F_L^2) u + 5.$$

If either $u \equiv 0 \pmod{2}$ or " $u \equiv 1 \pmod{2}$ and $L \equiv 1 \pmod{3}$ ", then d is a positive integer with period 2L + 1 of minimal type for $(1 + \sqrt{d})/2$ and the continued fraction expansion of $(1 + \sqrt{d})/2$ is of the form

$$(1+\sqrt{d})/2 = [a_0, \underbrace{1, \dots, 1}_{L-1}, F_L^2 u, F_L^2 u, \underbrace{1, \dots, 1}_{L-1}, 2a_0 - 1],$$

where $a_0 = \{F_L^3 F_{L+1} u^2 + (F_{L+1}^2 - F_{L+1} F_L + F_L^2) u + 2\}/2$. Similarly, for a positive integer u, put

$$d := \{F_{L+1}^2 F_L^6 u^4 + 2F_{L+1} F_L^3 (F_{L+1}^2 - F_{L+1} F_L + F_L^2) u^3 + (8F_{L+1}^2 F_L^2 - 6F_{L+1} F_L^3 + 1) u^2 - 2(F_{L+1}^2 - 5F_{L+1} F_L + F_L^2) u + 5\}/4.$$

If $u \equiv 1 \pmod{2}$ and $L \equiv 0, 2 \pmod{3}$, then d is a positive integer with period 2L + 1 of minimal type for \sqrt{d} and the continued fraction expansion of \sqrt{d} is of the form

$$\sqrt{d} = [a_0, \underbrace{\overline{1, \dots, 1}}_{L-1}, F_L^2 u, F_L^2 u, \underbrace{1, \dots, 1}_{L-1}, 2a_0],$$

where $a_0 = \{F_L^3 F_{L+1} u^2 + (F_{L+1}^2 - F_{L+1} F_L + F_L^2) u + 1\}/2.$

T. EGUCHI AND Y. KISHI

5. Proof of the main theorem

In this section, we shall give a proof of Theorem 1. This is obtained as a consequence of a theorem of Granville.

ABC-conjecture. Let a, b, c be coprime positive integers satisfying a + b = c. Then for any $\varepsilon > 0$, there exists a positive constant C_{ε} such that

$$c < C_{\varepsilon} N(a, b, c)^{1+\varepsilon}$$

where N(a, b, c) is the product of the distinct primes dividing abc.

Theorem 3 ([1, Theorem 1]). Suppose that $\varphi(X) \in \mathbb{Z}[X]$, without any repeated roots. Let κ be the largest integer which divides $\varphi(n)$ for all integers n, and select κ' to be the smallest divisor of κ for which κ/κ' is square-free. If the ABC-conjecture is true, then there are $\sim c_{\varphi}N$ positive integers $n \leq N$ for which $\varphi(n)/\kappa'$ is square-free, where c_{φ} is a certain positive constant.

5.1. The case $\ell = 5$

From Theorem 2(1), it is sufficient to show that there are infinitely many integers $u \geq 2$ for which $u^4 + 2u^3 + 3u^2 - 2u + 1$ is square-free. To prove this, let us apply Theorem 3 to

$$\varphi(X) := X^4 + 2X^3 + 3X^2 - 2X + 1.$$

Since the discriminant of $\varphi(X)$ is 4352, $\varphi(X)$ does not have repeated roots. Since $\varphi(0) = 1$, it holds $\kappa = 1$. Thus, we can take $\kappa' = 1$ and hence, there are infinitely many positive integers *n* for which $\varphi(n)$ is square-free, as desired.

5.2. The case $\ell \geq 7$

Let $L \geq 3$. It follows from Theorem 2(2) that for a positive integer u',

$$d := F_{L+1}^2 F_L^6 (2u')^4 + 2F_{L+1} F_L^3 (F_{L+1}^2 - F_{L+1} F_L + F_L^2) (2u')^3 + (8F_{L+1}^2 F_L^2 - 6F_{L+1} F_L^3 + 1) (2u')^2 - 2(F_{L+1}^2 - 5F_{L+1} F_L + F_L^2) (2u') + 5$$

is a positive integer with period $\ell = 2L + 1$ of minimal type for $(1 + \sqrt{d})/2$. Thus, as in Subsection 5.1, let us apply Theorem 3 to

$$\begin{split} \varphi(X) &:= 2^4 F_{L+1}^2 F_L^6 X^4 + 2^4 F_{L+1} F_L^3 (F_{L+1}^2 - F_{L+1} F_L + F_L^2) X^3 \\ &\quad + 2^2 (8 F_{L+1}^2 F_L^2 - 6 F_{L+1} F_L^3 + 1) X^2 \\ &\quad - 2^2 (F_{L+1}^2 - 5 F_{L+1} F_L + F_L^2) X + 5. \end{split}$$

Now we put $a := F_{L+1}$, $b := F_L$ for brevity. Then the discriminant $disc(\varphi)$ of $\varphi(X)$ is

$$\begin{split} disc(\varphi) &= 2^{16}a^2b^6\{16b^3a^{13} - 224b^4a^{12} + 336b^5a^{11} + (1520b^6 + 16b^2)a^{10} \\ &+ (-1696b^7 - 312b^3)a^9 + (-4672b^8 + 800b^4 + 1)a^8 \end{split}$$

$$\begin{split} &+ (1872b^9 + 1360b^5 - 12b)a^7 + (6864b^{10} - 2768b^6 - 94b^2)a^6 \\ &+ (1312b^{11} - 2984b^7 + 592b^3)a^5 \\ &+ (-3456b^{12} + 2208b^8 + 75b^4 - 6)a^4 \\ &+ (-2160b^{13} + 2704b^9 - 1040b^5 + 20b)a^3 \\ &+ (-336b^{14} + 400b^{10} - 174b^6 + 118b^2)a^2 \\ &+ (16b^{15} - 120b^{11} + 196b^7 - 100b^3)a + (b^8 - 6b^4 + 5)\}. \end{split}$$

We have $disc(\varphi) > 0$, which will be proved in the next subsection. Therefore, $\varphi(X)$ does not have repeated roots. Moreover, we have $\varphi(2) \not\equiv 0 \pmod{5}$ for any *L*. Indeed, this follows from the following table:

$L \pmod{20}$	0	1	2	3	4	5	6
$(F_L, F_{L+1}) \pmod{5}$	(0,1)	(1, 1)	(1,2)	(2,3)	(3,0)	(0,3)	(3,3)
$\varphi(2) \pmod{5}$	3	1	3	1	4	4	2
$L \pmod{20}$	7	8	9	10	11	12	13
$(F_L, F_{L+1}) \pmod{5}$	(3,1)	(1, 4)	(4,0)	(0,4)	(4, 4)	(4, 3)	(3, 2)
$\varphi(2) \pmod{5}$	2	1	3	3	1	3	1
$L \pmod{20}$	14	15	16	17	18	19	
$(F_L, F_{L+1}) \pmod{5}$	(2,0)	(0, 2)	(2,2)	(2,4)	(4, 1)	(1, 0)	
$\varphi(2) \pmod{5}$	4	4	2	2	1	3	

From this, together with $\varphi(0) = 5$, it also holds $\kappa = 1$, and hence, we can take $\kappa' = 1$. Thus, there are infinitely many positive integers u' for which $d = \varphi(u')$ is square-free, as desired. The proof of Theorem 1 is complete provided $disc(\varphi) > 0$ for any $L \geq 3$.

5.3. The positivity of the discriminant

The goal of this section is to prove the following:

Proposition 2. Under the notations of Subsection 5.2, we have $disc(\varphi) > 0$ for any $L (\geq 3)$.

Proof. Put $D(L) := disc(\varphi)/(2^{16}a^2b^6)$. In case of $3 \le L \le 7$, we can verify

$$\begin{split} D(3) &= 26920512 > 0, \\ D(4) &= 8102250000 > 0, \\ D(5) &= 2684459417600 > 0, \\ D(6) &= 855360599155712 > 0, \\ D(7) &= 276546455581228560 > 0 \end{split}$$

by straightforward calculations.

In the following, we consider the case $L \ge 8$. Now let us split D(L) into five polynomials:

$$D(L) = f_1(L) + f_2(L) + g_1(L) + g_2(L) + h(L),$$

where

$$\begin{split} f_1(L) &= 16b^3a^{13} + 336b^5a^{11} - 1696b^7a^9 + 1872b^9a^7 + 1312b^{11}a^5 \\ &- 2160b^{13}a^3 + 16b^{15}a, \\ f_2(L) &= -224b^4a^{12} + 1520b^6a^{10} - 4672b^8a^8 + 6864b^{10}a^6 - 3456b^{12}a^4 \\ &- 336b^{14}a^2, \\ g_1(L) &= 16b^2a^{10} + 800b^4a^8 - 2768b^6a^6 + 2208b^8a^4 + 400b^{10}a^2, \\ g_2(L) &= -312b^3a^9 + 1360b^5a^7 - 2984b^7a^5 + 2704b^9a^3 - 120b^{11}a, \\ h(L) &= a^8 - 12ba^7 - 94b^2a^6 + 592b^3a^5 + 75b^4a^4 - 1040b^5a^3 - 174b^6a^2 \\ &+ 196b^7a + b^8 - 6a^4 + 20ba^3 + 118b^2a^2 - 100b^3a - 6b^4 + 5. \end{split}$$

Since $L \ge 8$, it follows from (3.7) that

$$\frac{21}{13} = \frac{F_8}{F_7} < \frac{a}{b} \le \frac{F_9}{F_8} = \frac{34}{21},$$

and hence,

(5.1)
$$\frac{21}{13}b < a \le \frac{34}{21}b.$$

Therefore, we obtain

$$\begin{split} g_1(L) &> 16b^2 \left(\frac{21}{13}b\right)^{10} + 800b^4 \left(\frac{21}{13}b\right)^8 - 2768b^6 \left(\frac{34}{21}b\right)^6 + 2208b^8 \left(\frac{21}{13}b\right)^4 \\ &+ 400b^{10} \left(\frac{21}{13}b\right)^2 \\ &= \frac{62090306674135877152096}{11823588092798847729}b^{12} \\ &> 0, \end{split}$$

$$h(L) &> \left(\frac{21}{13}b\right)^8 - 12b \left(\frac{34}{21}b\right)^7 - 94b^2 \left(\frac{34}{21}b\right)^6 + 592b^3 \left(\frac{21}{13}b\right)^5 \\ &+ 75b^4 \left(\frac{21}{13}b\right)^4 - 1040b^5 \left(\frac{34}{21}b\right)^3 - 174b^6 \left(\frac{34}{21}b\right)^2 + 196b^7 \left(\frac{21}{13}b\right) \\ &+ b^8 - 6 \left(\frac{34}{21}b\right)^4 + 20b \left(\frac{21}{13}b\right)^3 + 118b^2 \left(\frac{21}{13}b\right)^2 - 100b^3 \left(\frac{34}{21}b\right) \\ &- 6b^4 + 5 \\ &= \frac{231902351941769392279}{489734418044922687}b^8 + \frac{26076650980}{142424919}b^4 + 5 \\ &> 0. \end{split}$$

From now on, we shall prove $f_1(L) + f_2(L) + g_2(L) > 0$. By taking n = L + 1 and m = L in (3.3), we have

(5.2)
$$5ab = 5F_{L+1}F_L = L_{2L+1} - (-1)^L L_1 = L_{2L+1} - (-1)^L L_1$$

Moreover, by taking n = L in (3.4), we have

(5.3)
$$a^2 + b^2 = F_{2L+1}.$$

Furthermore, by taking n = 2L + 1 in (3.5), we have

(5.4)
$$L^2_{2L+1} = 5F^2_{2L+1} + (-1)^{2L+1}4 = 5F^2_{2L+1} - 4.$$

Here, it follows from (5.3) that

$$(5F_{2L+1}^2 - 4) - \left(\sqrt{5}F_{2L+1} - \frac{1}{b^2}\right)^2 = \frac{2\sqrt{5}F_{2L+1}}{b^2} - \frac{1}{b^4} - 4$$
$$= \frac{2\sqrt{5}(a^2 + b^2)b^2 - 1 - 4b^4}{b^4}$$
$$= \frac{(2\sqrt{5} - 4)b^4 + (2\sqrt{5}a^2b^2 - 1)}{b^4}$$
$$> 0.$$

From this, together with (5.4), we have

(5.5)
$$L_{2L+1} > \sqrt{5}F_{2L+1} - \frac{1}{b^2}.$$

Hence by (5.2), (5.3), (5.5), we get

(5.6)
$$ab = \frac{1}{5}(L_{2L+1} - (-1)^L) > \frac{1}{5}(\sqrt{5}F_{2L+1} - \frac{1}{b^2} - (-1)^L) = \frac{1}{5}(\sqrt{5}(a^2 + b^2) - \frac{1}{b^2} - (-1)^L).$$

By putting

$$t(L) := (f_1(L) + g_2(L))/(ab),$$

$$\begin{split} \text{it holds from (5.1) and } b &> 2 \text{ that} \\ t(L) &= 16b^2a^{12} + 336b^4a^{10} - 1696b^6a^8 + 1872b^8a^6 + 1312b^{10}a^4 - 2160b^{12}a^2 \\ &\quad + 16b^{14} - 312b^2a^8 + 1360b^4a^6 - 2984b^6a^4 + 2704b^8a^2 - 120b^{10} \\ &> 16b^2\left(\frac{21}{13}b\right)^{12} + 336b^4\left(\frac{21}{13}b\right)^{10} - 1696b^6\left(\frac{34}{21}b\right)^8 + 1872b^8\left(\frac{21}{13}b\right)^6 \\ &\quad + 1312b^{10}\left(\frac{21}{13}b\right)^4 - 2160b^{12}\left(\frac{34}{21}b\right)^2 + 16b^{14} - 312b^2\left(\frac{34}{21}b\right)^8 \\ &\quad + 1360b^4\left(\frac{21}{13}b\right)^6 - 2984b^6\left(\frac{34}{21}b\right)^4 + 2704b^8\left(\frac{21}{13}b\right)^2 - 120b^{10} \\ &= \frac{1920935609759164060943190560}{881200196968205322394641}b^{14} - \frac{251541467016412596680}{60854572656469683}b^{10} \end{split}$$

$$> 2179b^{14} - 4134b^{10} > 0.$$

Then by (5.6), we obtain

(5.7)
$$f_1(L) + f_2(L) + g_2(L) = f_2(L) + abt(L)$$

> $f_2(L) + \frac{1}{5}(\sqrt{5}(a^2 + b^2) - \frac{1}{b^2} - (-1)^L)t(L).$

Now we consider the value of $a^2 - \alpha^2 b^2$ by using (3.1). Noting $\alpha\beta = -1$, $1 + \alpha^2 = (5 + \sqrt{5})/2$ and $\alpha^2 - \beta^2 = \sqrt{5}$, we have

$$a^{2} - \alpha^{2}b^{2} = \left(\frac{\alpha^{L+1} - \beta^{L+1}}{\sqrt{5}}\right)^{2} - \alpha^{2}\left(\frac{\alpha^{L} - \beta^{L}}{\sqrt{5}}\right)^{2}$$
$$= \frac{-2(-1)^{L+1} + \beta^{2L+2} + 2(-1)^{L}\alpha^{2} - \alpha^{2}\beta^{2L}}{5}$$
$$= (-1)^{L}\frac{2}{5}(1 + \alpha^{2}) - \frac{\beta^{2L}}{5}(\alpha^{2} - \beta^{2})$$
$$= (-1)^{L}\frac{2}{5} \cdot \frac{5 + \sqrt{5}}{2} - \frac{\beta^{2L}}{5}\sqrt{5}$$
$$= (-1)^{L}\left(1 + \frac{1}{\sqrt{5}}\right) - \frac{1}{\sqrt{5}\alpha^{2L}}.$$

Therefore, by putting $e := 1/(\sqrt{5}\alpha^{2L}) > 0$, it holds that

$$a^{2} = \alpha^{2}b^{2} + (-1)^{L}(1 + \frac{1}{\sqrt{5}}) - e.$$

By substituting this into the right hand side of (5.7) and arranging the terms in descending powers of b, we get

$$\begin{split} f_2(L) &+ \frac{1}{5} (\sqrt{5}(a^2 + b^2) - \frac{1}{b^2} - (-1)^L) t(L) \\ &= -224b^4 a^{12} + 1520b^6 a^{10} - 4672b^8 a^8 + 6864b^{10}a^6 - 3456b^{12}a^4 - 336b^{14}a^2 \\ &+ \frac{1}{5} (\sqrt{5}(a^2 + b^2) - \frac{1}{b^2} - (-1)^L) (16b^2 a^{12} + 336b^4 a^{10} - 1696b^6 a^8 \\ &+ 1872b^8 a^6 + 1312b^{10}a^4 - 2160b^{12}a^2 + 16b^{14} - 312b^2 a^8 + 1360b^4 a^6 \\ &- 2984b^6 a^4 + 2704b^8 a^2 - 120b^{10}) \\ &= c_{14}'' b^{14} + c_{12}'' b^{12} + c_{10}'' b^{10} + c_8'' b^8 + c_6'' b^6 + c_4'' b^4 + c_2'' b^2 + c_0'', \end{split}$$
 where

W

$$\begin{split} c_{14}'' &= (-160\sqrt{5} - 160)e, \\ c_{12}'' &= (1672\sqrt{5} + 3800)e^2 + (-1)^L(-4288\sqrt{5} - 9792)e + (1248\sqrt{5} + 2656), \\ c_{10}'' &= (-2168\sqrt{5} - 5704)e^3 + (-1)^L(46128/5\sqrt{5} + 21616)e^2 \\ &\quad + (-9024\sqrt{5} - 98944/5)e + (-1)^L(576\sqrt{5} + 4032/5), \end{split}$$

$$\begin{split} c_8'' &= (7296\sqrt{5}/5 + 1728)e^4 + (-1)^L (-33168\sqrt{5}/5 - 57408/5)e^3 \\ &+ (217588\sqrt{5}/25 + 84548/5)e^2 \\ &+ (-1)^L (-16144\sqrt{5}/25 - 11696/25)e \\ &+ (-81056\sqrt{5}/25 - 188544/25), \\ c_6'' &= (376\sqrt{5}/5 - 1064)e^5 + (-1)^L (448\sqrt{5} + 23056/5)e^4 \\ &+ (-7264\sqrt{5}/25 - 25608/5)e^3 \\ &+ (-1)^L (-114696\sqrt{5}/25 - 175984/25)e^2 \\ &+ (1050656\sqrt{5}/125 + 441536/25)e \\ &+ (-1)^L (-505808\sqrt{5}/125 - 223088/25), \\ c_4'' &= (104\sqrt{5} - 168)e^6 + (-1)^L (-2064\sqrt{5}/5 + 480)e^5 \\ &+ (1108\sqrt{5}/5 - 7724/5)e^4 \\ &+ (-1)^L (52016\sqrt{5}/25 + 32032/5)e^3 \\ &+ (-1)^L (609584\sqrt{5}/125 + 271216/25)e \\ &+ (-186576\sqrt{5}/125 - 81968/25), \\ c_2'' &= (-16\sqrt{5}/5)e^7 + (-1)^L (112\sqrt{5}/5 + 96/5)e^6 + (-24\sqrt{5}/5 - 96/5)e^5 \\ &+ (-1)^L (-25296\sqrt{5}/25 - 292944/125)e^2 \\ &+ (-1)^L (-25296\sqrt{5}/25 - 292944/125)e^2 \\ &+ (-1)^L (-16064\sqrt{5}/625 - 9792/125), \\ c_0'' &= (-16/5)e^6 + (-1)^L (96\sqrt{5}/25 + 96/5)e^5 + (-96\sqrt{5}/5 + 24/5)e^4 \\ &+ (-1)^L (-224\sqrt{5}/25 - 736/5)e^3 + (2592\sqrt{5}/25 + 8544/25)e^2 \\ &+ (-1)^L (-82944\sqrt{5}/625 - 8448/25)e + (33344\sqrt{5}/625 + 78144/625). \end{split}$$

We remark that by $L \ge 8$ and $[\sqrt{5}\alpha^{16}] = 4935$, we have

(5.8)
$$0 < e = \frac{1}{\sqrt{5}\alpha^{2L}} < \frac{1}{\sqrt{5}\alpha^{16}} < \frac{1}{4935}.$$

(i) Suppose that L is even. Then by (5.8), we have

$$c_{12}'' = (1672\sqrt{5} + 3800)e^2 + (-4288\sqrt{5} - 9792)e + (1248\sqrt{5} + 2656)$$

> 0 + (-4) + (1248\sqrt{5} + 2656)
= 1248\sqrt{5} + 2652,

$$\begin{split} c_{10}^{\prime\prime} &= (-2168\sqrt{5} - 5704)e^3 + (46128/5\sqrt{5} + 21616)e^2 \\ &+ (-9024\sqrt{5} - 98944/5)e + (576\sqrt{5} + 4032/5) \\ &> (-1) + 0 + (-9) + (576\sqrt{5} + 4032/5) \\ &> 0, \\ c_8^{\prime\prime} &= (7296\sqrt{5}/5 + 1728)e^4 + (-33168\sqrt{5}/5 - 57408/5)e^3 \\ &+ (217588\sqrt{5}/25 + 84548/5)e^2 + (-16144\sqrt{5}/25 - 11696/25)e \\ &+ (-81056\sqrt{5}/25 - 188544/25) \\ &> 0 + (-1) + 0 + (-1) + (-81056\sqrt{5}/25 - 188544/25) \\ &= -81056\sqrt{5}/25 - 188594/25, \\ c_6^{\prime\prime} &= (376\sqrt{5}/5 - 1064)e^5 + (448\sqrt{5} + 23056/5)e^4 \\ &+ (-7264\sqrt{5}/25 - 25608/5)e^3 + (-114696\sqrt{5}/25 - 175984/25)e^2 \\ &+ (1050656\sqrt{5}/125 + 441536/25)e + (-505808\sqrt{5}/125 - 223088/25) \\ &> (-1) + 0 + (-1) + (-1) + 0 + (-505808\sqrt{5}/125 - 223088/25) \\ &= -505808\sqrt{5}/125 - 223163/25, \\ c_4^{\prime\prime} &= (104\sqrt{5} - 168)e^6 + (-2064\sqrt{5}/5 + 480)e^5 + (1108\sqrt{5}/5 - 7724/5)e^4 \\ &+ (52016\sqrt{5}/25 + 32032/5)e^3 + (-134064\sqrt{5}/25 - 315704/25)e^2 \\ &+ (609584\sqrt{5}/125 + 271216/25)e + (-186576\sqrt{5}/125 - 81968/25) \\ &> 0 + (-1) + (-1) + 0 + (-1) + 0 + (-186576\sqrt{5}/125 - 81968/25) \\ &= -186576\sqrt{5}/125 - 82043/25, \\ c_2^{\prime\prime} &= (-16\sqrt{5}/5)e^7 + (112\sqrt{5}/5 + 96/5)e^6 + (-24\sqrt{5}/5 - 96/5)e^5 \\ &+ (-296\sqrt{5} - 2384/5)e^4 + (21584\sqrt{5}/25 + 9024/5)e^3 \\ &+ (-25296\sqrt{5}/25 - 292944/125)e^2 + (286944\sqrt{5}/625 + 139808/125)e \\ &+ (-16064\sqrt{5}/625 - 0792/125) \\ &> (-1) + 0 + (-1) + (-1) + 0 + (-1) + 0 + (-16064\sqrt{5}/625 - 9792/125) \\ &= -16064\sqrt{5}/625 - 10292/125, \\ c_0^{\prime\prime} &= (-16\sqrt{5}/25 - 736/5)e^3 + (2592\sqrt{5}/25 + 8544/25)e^2 \\ &+ (-224\sqrt{5}/25 - 736/5)e^3 + (2592\sqrt{5}/25 + 8544/25)e^2 \\ &+ (-82944\sqrt{5}/625 - 8448/25)e + (33344\sqrt{5}/625 + 78144/625) \\ &> (-1) + 0 + (-1) + (-1) + 0 + (-1) + (-1) + (33344\sqrt{5}/625 + 78144/625) \\ &> (-1) + 0 + (-1) + (-1) + 0 + (-1) + (-1$$

Since $\beta^L > 0$ by $2 \mid L$, moreover, we have

$$eb^{2} = \frac{1}{\sqrt{5}\alpha^{2L}} \left(\frac{\alpha^{L} - \beta^{L}}{\sqrt{5}}\right)^{2} < \frac{1}{\sqrt{5}\alpha^{2L}} \left(\frac{\alpha^{L}}{\sqrt{5}}\right)^{2} = \frac{1}{5\sqrt{5}}$$

Therefore, by noting $b \ge 21$, we obtain (5.9) $f_2(L) + \frac{1}{5}(\sqrt{5}(a^2 + b^2) - \frac{1}{b^2} - 1)t(L)$ $> (-160\sqrt{5} - 160)eb^{14} + (1248\sqrt{5} + 2652)b^{12}$ $+(-81056\sqrt{5}/25-188594/25)b^{8}+(-505808\sqrt{5}/125-223163/25)b^{6}$ $+(-186576\sqrt{5}/125-82043/25)b^{4}+(-16064\sqrt{5}/625-10292/125)b^{2}$ $> (-160\sqrt{5} - 160)b^{12} \cdot \frac{1}{5\sqrt{5}} + (1248\sqrt{5} + 2652)b^{12}$ $+(-81056\sqrt{5}/25-188594/25)b^{8}+(-505808\sqrt{5}/125-223163/25)b^{6}$ $+(-186576\sqrt{5}/125-82043/25)b^{4}+(-16064\sqrt{5}/625-10292/125)b^{2}$ $= (6208\sqrt{5}/5 + 2620)b^{12}$ $+(-81056\sqrt{5}/25-188594/25)b^{8}+(-505808\sqrt{5}/125-223163/25)b^{6}$ $+(-186576\sqrt{5}/125-82043/25)b^{4}+(-16064\sqrt{5}/625-10292/125)b^{2}$ $> (6208\sqrt{5}/5 + 2620)b^8 \cdot 21^4$ $+(-81056\sqrt{5}/25-188594/25)b^{8}+(-505808\sqrt{5}/125-223163/25)b^{8}$ $+(-186576\sqrt{5}/125-82043/25)b^{8}+(-16064\sqrt{5}/625-10292/125)b^{8}$ $= (150911751616\sqrt{5}/625 + 63690048208/125)b^8$ > 0.Then by (5.7) and (5.9), we get $f_1(L) + f_2(L) + g_2(L) > 0$. (ii) Suppose that L is odd. Then again by (5.8), we have $c_{12}'' = (1672\sqrt{5} + 3800)e^2 + (4288\sqrt{5} + 9792)e + (1248\sqrt{5} + 2656)e^2$ $> 0 + 0 + (1248\sqrt{5} + 2656)$ $= 1248\sqrt{5} + 2656.$ $c_{10}'' = (-2168\sqrt{5} - 5704)e^3 + (-46128/5\sqrt{5} - 21616)e^2$

+
$$(-9024\sqrt{5} - 98944/5)e + (-576\sqrt{5} - 4032/5)$$

$$> (-1) + (-1) + (-9) + (-576\sqrt{5} - 4032/5)$$

= $-576\sqrt{5} - 4087/5$,
 $c_8'' = (7296\sqrt{5}/5 + 1728)e^4 + (33168\sqrt{5}/5 + 57408/5)e^3$
+ $(217588\sqrt{5}/25 + 84548/5)e^2 + (16144\sqrt{5}/25 + 11696/25)e^3$

$$\begin{split} &+ (-81056\sqrt{5}/25 - 188544/25) \\ &> 0 + 0 + 0 + (-81056\sqrt{5}/25 - 188544/25) \\ &> -81056\sqrt{5}/25 - 188544/25, \\ &C_6'' = (376\sqrt{5}/5 - 1064)e^5 + (-448\sqrt{5} - 23056/5)e^4 \\ &+ (-7264\sqrt{5}/25 - 25608/5)e^3 + (114696\sqrt{5}/25 + 175984/25)e^2 \\ &+ (1050656\sqrt{5}/125 + 441536/25)e + (505808\sqrt{5}/125 + 223088/25) \\ &> (-1) + (-1) + (-1) + 0 + 0 + (505808\sqrt{5}/125 + 223088/25) \\ &> 0, \\ &C_4'' = (104\sqrt{5} - 168)e^6 + (2064\sqrt{5}/5 - 480)e^5 + (1108\sqrt{5}/5 - 7724/5)e^4 \\ &+ (-52016\sqrt{5}/25 - 32032/5)e^3 + (-134064\sqrt{5}/25 - 315704/25)e^2 \\ &+ (-609584\sqrt{5}/125 - 271216/25)e + (-186576\sqrt{5}/125 - 81968/25) \\ &> (-1) + 0 + (-1) + (-1) + (-1) + (-5) + (-186576\sqrt{5}/125 - 81968/25) \\ &> -186576\sqrt{5}/125 - 82193/25, \\ &C_2'' = (-16\sqrt{5}/5)e^7 + (-112\sqrt{5}/5 - 96/5)e^6 + (-24\sqrt{5}/5 - 96/5)e^5 \\ &+ (296\sqrt{5} + 2384/5)e^4 + (21584\sqrt{5}/25 + 9024/5)e^3 \\ &+ (25296\sqrt{5}/25 + 292944/125)e^2 + (286944\sqrt{5}/625 + 139808/125)e \\ &+ (16064\sqrt{5}/625 + 9792/125) \\ &> (-1) + (-1) + (-1) + 0 + 0 + 0 + (16064\sqrt{5}/625 + 9792/125) \\ &> 0, \\ &C_0'' = (-16/5)e^6 + (-96\sqrt{5}/25 - 96/5)e^5 + (-96\sqrt{5}/5 + 24/5)e^4 \\ &+ (224\sqrt{5}/25 + 736/5)e^3 + (2592\sqrt{5}/25 + 8544/25)e^2 \\ &+ (82944\sqrt{5}/625 + 8448/25)e + (33344\sqrt{5}/625 + 78144/625) \\ &> (-1) + (-1) + (-1) + 0 + 0 + 0 + (33344\sqrt{5}/625 + 78144/625) \\ &> (-1) + (-1) + (-1) + 0 + 0 + 0 + (33344\sqrt{5}/625 + 78144/625) \\ &> 0. \end{split}$$

Since $2 \nmid L$ and $2 + \beta^{2L} < 5$, moreover, it holds that

$$eb^{2} = \frac{1}{\sqrt{5}\alpha^{2L}} \left(\frac{\alpha^{L} - \beta^{L}}{\sqrt{5}}\right)^{2}$$

= $\frac{1}{\sqrt{5}\alpha^{2L}} \cdot \frac{\alpha^{2L} - 2(-1)^{L} + \beta^{2L}}{5}$
= $\frac{1}{5\sqrt{5}} + \frac{2 + \beta^{2L}}{5\sqrt{5}\alpha^{2L}} < \frac{1}{5\sqrt{5}} + \frac{1}{\sqrt{5}\alpha^{2L}} = \frac{1}{5\sqrt{5}} + e,$

and hence,

$$\begin{split} eb^4 &< \left(\frac{1}{5\sqrt{5}} + e\right)b^2 = \frac{b^2}{5\sqrt{5}} + eb^2 < \frac{b^2}{5\sqrt{5}} + \frac{1}{5\sqrt{5}} + e \\ &< \frac{b^2}{5\sqrt{5}} + \frac{1}{5\sqrt{5}} + \frac{1}{4935} < \frac{b^2}{5\sqrt{5}} + \frac{1}{10}. \end{split}$$

Therefore, again by $b \ge 21$, we obtain

$$\begin{array}{ll} (5.10) \quad f_2(L) + \frac{1}{5}(\sqrt{5}(a^2+b^2) - \frac{1}{b^2}+1)t(L) \\ &> (-160\sqrt{5}-160)eb^{14} + (1248\sqrt{5}+2656)b^{12} + (-576\sqrt{5}-4087/5)b^{10} \\ &+ (-81056\sqrt{5}/25-188544/25)b^8 + (-186576\sqrt{5}/125-82193/25)b^4 \\ &> (-160\sqrt{5}-160)b^{10} \cdot \left(\frac{b^2}{5\sqrt{5}} + \frac{1}{10}\right) + (1248\sqrt{5}+2656)b^{12} \\ &+ (-576\sqrt{5}-4087/5)b^{10} + (-81056\sqrt{5}/25-188544/25)b^8 \\ &+ (-186576\sqrt{5}/125-82193/25)b^4 \\ &= (6208\sqrt{5}/5+2624)b^{12} + (-592\sqrt{5}-4167/5)b^{10} \\ &+ (-81056\sqrt{5}/25-188544/25)b^8 + (-186576\sqrt{5}/125-82093/25)b^4 \\ &> (6208\sqrt{5}/5+2624)b^{10} \cdot 21^2 + (-592\sqrt{5}-4167/5)b^{10} \\ &+ (-81056\sqrt{5}/25-188544/25)b^{10} + (-186576\sqrt{5}/125-82093/25)b^{10} \\ &+ (-81056\sqrt{5}/25-188544/25)b^{10} + (-186576\sqrt{5}/125-82093/25)b^{10} \\ &+ (-81056\sqrt{5}/25-188544/25)b^{10} + (-186576\sqrt{5}/125-82093/25)b^{10} \\ &+ (-67777344\sqrt{5}/125+28638028/25)b^{10} \\ &> 0. \end{array}$$

Then by (5.7) and (5.10), we get $f_1(L) + f_2(L) + g_2(L) > 0$. The proof is completed.

References

- [1] A. Granville, ABC allows us to count squarefrees, Internat. Math. Res. Notices 1998 (1998), no. 19, 991–1009. https://doi.org/10.1155/S1073792898000592
- F. Kawamoto, Y. Kishi, H. Suzuki, and K. Tomita, Real quadratic fields, continued fractions, and a construction of primary symmetric parts of ELE type, Kyushu J. Math. 73 (2019), no. 1, 165–187. https://doi.org/10.2206/kyushujm.73.165
- F. Kawamoto and K. Tomita, Continued fractions and certain real quadratic fields of minimal type, J. Math. Soc. Japan 60 (2008), no. 3, 865-903. http://projecteuclid. org/euclid.jmsj/1217884495
- [4] F. Kawamoto and K. Tomita, Continued fractions with even period and an infinite family of real quadratic fields of minimal type, Osaka J. Math. 46 (2009), no. 4, 949–993. http: //projecteuclid.org/euclid.ojm/1260892836
- P. Ribenboim, The New Book of Prime Number Records, Springer, New York, 1996. https://doi.org/10.1007/978-1-4612-0759-7

TAKANOBU EGUCHI DEPARTMENT OF MATHEMATICS AICHI UNIVERSITY OF EDUCATION AICHI 448-8542, JAPAN Email address: taka0708soccer13@gmail.com

YASUHIRO KISHI DEPARTMENT OF MATHEMATICS AICHI UNIVERSITY OF EDUCATION AICHI 448-8542, JAPAN Email address: ykishi@auecc.aichi-edu.ac.jp