Acknowledgement
본 논문은 한국연구재단(NRF-2022R1F1A1074752) 지원에 의해 수행되었습니다.
References
- K. A. Mazzio and C. K. Luscombe, Chem. Soc. Rev., 44, 78 (2015). doi: https://doi.org/10.1039/c4cs00227j
- J. Ajayan, D. Nirmal, P. Mohankumar, M. Saravanan, M. Jagadesh, and L. Arivazhagan, Superlattices Microstruct., 143, 106549 (2020.) doi: https://doi.org/10.1016/j.spmi.2020.106549
- C. J. Brabec, Sol. Energy Mater. Sol. Cells, 83, 273 (2004). doi: https://doi.org/10.1016/j.solmat.2004.02.030
- J. Khan and M. H. Arsalan, Renewable Sustainable Energy Rev., 55, 414 (2016). doi: https://doi.org/10.1016/j.rser.2015.10.135
- M. C. Scharber and N. S. Sariciftci, Prog. Polym. Sci., 38, 1929 (2013). doi: https://doi.org/10.1016/j.progpolymsci.2013.05.001
- A. Cadisa, W. D. Oosterbaan, K. Vandewal, J. C. Bolsee, S. Bertho, J. D'Haen, L. Lutsen, D. Vanderzande, and J. V. Manca, Adv. Funct. Mater., 19, 3300 (2009). doi: https://doi.org/10.1002/adfm.200900797
- S. Sen and R. Islam, Braz. J. Phys., 51, 1661 (2021). doi: https://doi.org/10.1007/s13538-021-00974-9
- B. Ray, P. R. Nair, and M. A. Alam, Sol. Energy Mater. Sol. Cells, 95, 3287 (2011). doi: https://doi.org/10.1016/j.solmat.2011.07.006
- N. Wang, J. Yu, Y. Zang, J. Huang, and Y. Jiang, Sol. Energy Mater. Sol. Cells, 94, 263 (2010). doi: https://doi.org/10.1016/j.solmat.2009.09.012
- F. Deschler, D. Riedel, B. Ecker, E. Von Hauff, E. Da Como, and R.C.I. MacKenzie, Phys. Chem. Chem. Phys., 15, 764 (2013). doi: https://doi.org/10.1039/c2cp43876c
- W. Aloui, T. Adhikari, J. M. Nunzi, A. Bouazizi, and K. Khirouni, Mater. Sci. Semicond. Process., 39, 575 (2015). doi: https://doi.org/10.1016/j.mssp.2015.05.060
- Z. Liang, M. Li, Q. Wang, Y. Qin, S. J. Stuard, Z. Peng, Y. Deng, H. Ade, L. Ye, and Y. Geng, Joule, 4, 1278 (2020). doi: https://doi.org/10.1016/j.joule.2020.04.014
- B. T. De Villers, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, J. Phys. Chem. C, 113, 18978 (2009). doi: https://doi.org/10.1021/jp9082163
- H. L. Huang, C. T. Lee, and H. Y. Lee, Org. Electron., 21, 126 (2015). doi: https://doi.org/10.1016/j.orgel.2015.03.012
- A. K. Mishra and R. K. Shukla, Mater. Today: Proc., 49, 3181 (2022). doi: https://doi.org/10.1016/j.matpr.2020.11.376
- M. N. Zidan, T. Ismail, and I. S. Fahim, Mater. Res. Express, 8, 095508 (2021). doi: https://doi.org/10.1088/2053-1591/ac2773
- A. K. Mishra and R. K. Shukla, Mater. Today: Proc., 46, 2288 (2021). doi: https://doi.org/10.1016/j.matpr.2021.04.084
- F. Machui, S. Langner, X. Zhu, S. Abbott, and C. J. Brabec, Sol. Energy Mater. Sol. Cells, 100, 138 (2012). doi: https://doi.org/10.1016/j.solmat.2012.01.005
- Y. Xiao, S. Zhou, Y. Su, H. Wang, L. Ye, S. W. Tsang, F. Xie, and J. Xu, Org. Electron., 15, 2007 (2014). doi: https://doi.org/10.1016/j.orgel.2014.05.011
- P. G. Karagiannidis, D. Georgiou, C. Pitsalidis, A. Laskarakis, and S. Logothetidis, Mater. Chem. Phys., 129, 1207 (2011). doi: https://doi.org/10.1016/j.matchemphys.2011.06.007
- S. K. Park, Y. H. Kim, and J. I. Han, Jpn. J. Appl. Phys., 48, 081505 (2009). doi: https://doi.org/10.1143/JJAP.48.081505
- F. Matsumoto, K. Moriwaki, Y. Takao, and T. Ohno, Beilstein J. Org. Chem., 4, 33 (2008). doi: https://doi.org/10.3762/bjoc.4.33
- M. T. Sajjad, A. Ruseckas, and I.D.W. Samuel, Matter, 3, 341 (2020). doi: https://doi.org/10.1016/j.matt.2020.06.028
- O. V. Mikhnenko, P.W.M. Blom, and T. Q. Nguyen, Energy Environ. Sci., 8, 1867 (2015). doi: https://doi.org/10.1039/c5ee00925a
- D. H. Wang, D. G. Choi, O. O. Park, and J. H. Park, J. Mater. Chem., 20, 4910 (2010). doi: https://doi.org/10.1039/b926105b
- Y. H. Huh, I. G. Bae, H. G. Jeon, and B. Park, Opt. Express, 24, A1321 (2016). doi: https://doi.org/10.1364/oe.24.0a1321
- J. M. Shin, Y. J. Kim, H. Yun, G. R. Yi, and B. J. Kim, ACS Nano, 11, 2133 (2017). doi: https://doi.org/10.1021/acsnano.6b08342
- C. Cui and Y. Li, Aggregate, 2, e31 (2021). doi: https://doi.org/10.1002/agt2.31