DOI QR코드

DOI QR Code

Improving the Charge Extraction of Organic Photovoltaics by Controlling the PCBM Overlayer/Active-Layer Interface

PCBM Overlayer/활성층 계면 제어를 통한 유기 태양전지의 전하 추출 개선

  • Soonho Hong (Department of Semiconductor Physics Electronics, Sangji University) ;
  • Haechang Jeong (Department of Semiconductor Physics Electronics, Sangji University) ;
  • Hoseung Kang (Department of New Energy and Mining Engineering, Sangji University) ;
  • Sunyoung Sohn (Department of Semiconductor Physics Electronics, Sangji University)
  • 홍순호 (상지대학교 반도체물리전자학과) ;
  • 정해창 (상지대학교 반도체물리전자학과) ;
  • 강호승 (상지대학교 신에너지자원공학과) ;
  • 손선영 (상지대학교 반도체물리전자학과)
  • Received : 2024.05.04
  • Accepted : 2024.05.20
  • Published : 2024.07.01

Abstract

Organic photovoltaic (OPV) devices have attracted attention due to their high efficiency and simple manufacturing process. Applying an overlayer to OPV devices is one way to improve their performance because it can improve charge extraction and suppress vertical phase separation. In addition, dichloromethane (DCM) was used as an orthogonal solvent to minimize the effect on other layers. However, an coating problems due to the use of DCM were found, which affects surface morphology as rough or peeling. Additional research efforts are needed to solve these problems, and optimal results are expected to be obtained by utilizing various buffer layers or selective organic solvents.

Keywords

Acknowledgement

본 논문은 한국연구재단(NRF-2022R1F1A1074752) 지원에 의해 수행되었습니다.

References

  1. K. A. Mazzio and C. K. Luscombe, Chem. Soc. Rev., 44, 78 (2015). doi: https://doi.org/10.1039/c4cs00227j
  2. J. Ajayan, D. Nirmal, P. Mohankumar, M. Saravanan, M. Jagadesh, and L. Arivazhagan, Superlattices Microstruct., 143, 106549 (2020.) doi: https://doi.org/10.1016/j.spmi.2020.106549
  3. C. J. Brabec, Sol. Energy Mater. Sol. Cells, 83, 273 (2004). doi: https://doi.org/10.1016/j.solmat.2004.02.030
  4. J. Khan and M. H. Arsalan, Renewable Sustainable Energy Rev., 55, 414 (2016). doi: https://doi.org/10.1016/j.rser.2015.10.135
  5. M. C. Scharber and N. S. Sariciftci, Prog. Polym. Sci., 38, 1929 (2013). doi: https://doi.org/10.1016/j.progpolymsci.2013.05.001
  6. A. Cadisa, W. D. Oosterbaan, K. Vandewal, J. C. Bolsee, S. Bertho, J. D'Haen, L. Lutsen, D. Vanderzande, and J. V. Manca, Adv. Funct. Mater., 19, 3300 (2009). doi: https://doi.org/10.1002/adfm.200900797
  7. S. Sen and R. Islam, Braz. J. Phys., 51, 1661 (2021). doi: https://doi.org/10.1007/s13538-021-00974-9
  8. B. Ray, P. R. Nair, and M. A. Alam, Sol. Energy Mater. Sol. Cells, 95, 3287 (2011). doi: https://doi.org/10.1016/j.solmat.2011.07.006
  9. N. Wang, J. Yu, Y. Zang, J. Huang, and Y. Jiang, Sol. Energy Mater. Sol. Cells, 94, 263 (2010). doi: https://doi.org/10.1016/j.solmat.2009.09.012
  10. F. Deschler, D. Riedel, B. Ecker, E. Von Hauff, E. Da Como, and R.C.I. MacKenzie, Phys. Chem. Chem. Phys., 15, 764 (2013). doi: https://doi.org/10.1039/c2cp43876c
  11. W. Aloui, T. Adhikari, J. M. Nunzi, A. Bouazizi, and K. Khirouni, Mater. Sci. Semicond. Process., 39, 575 (2015). doi: https://doi.org/10.1016/j.mssp.2015.05.060
  12. Z. Liang, M. Li, Q. Wang, Y. Qin, S. J. Stuard, Z. Peng, Y. Deng, H. Ade, L. Ye, and Y. Geng, Joule, 4, 1278 (2020). doi: https://doi.org/10.1016/j.joule.2020.04.014
  13. B. T. De Villers, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, J. Phys. Chem. C, 113, 18978 (2009). doi: https://doi.org/10.1021/jp9082163
  14. H. L. Huang, C. T. Lee, and H. Y. Lee, Org. Electron., 21, 126 (2015). doi: https://doi.org/10.1016/j.orgel.2015.03.012
  15. A. K. Mishra and R. K. Shukla, Mater. Today: Proc., 49, 3181 (2022). doi: https://doi.org/10.1016/j.matpr.2020.11.376
  16. M. N. Zidan, T. Ismail, and I. S. Fahim, Mater. Res. Express, 8, 095508 (2021). doi: https://doi.org/10.1088/2053-1591/ac2773
  17. A. K. Mishra and R. K. Shukla, Mater. Today: Proc., 46, 2288 (2021). doi: https://doi.org/10.1016/j.matpr.2021.04.084
  18. F. Machui, S. Langner, X. Zhu, S. Abbott, and C. J. Brabec, Sol. Energy Mater. Sol. Cells, 100, 138 (2012). doi: https://doi.org/10.1016/j.solmat.2012.01.005
  19. Y. Xiao, S. Zhou, Y. Su, H. Wang, L. Ye, S. W. Tsang, F. Xie, and J. Xu, Org. Electron., 15, 2007 (2014). doi: https://doi.org/10.1016/j.orgel.2014.05.011
  20. P. G. Karagiannidis, D. Georgiou, C. Pitsalidis, A. Laskarakis, and S. Logothetidis, Mater. Chem. Phys., 129, 1207 (2011). doi: https://doi.org/10.1016/j.matchemphys.2011.06.007
  21. S. K. Park, Y. H. Kim, and J. I. Han, Jpn. J. Appl. Phys., 48, 081505 (2009). doi: https://doi.org/10.1143/JJAP.48.081505
  22. F. Matsumoto, K. Moriwaki, Y. Takao, and T. Ohno, Beilstein J. Org. Chem., 4, 33 (2008). doi: https://doi.org/10.3762/bjoc.4.33
  23. M. T. Sajjad, A. Ruseckas, and I.D.W. Samuel, Matter, 3, 341 (2020). doi: https://doi.org/10.1016/j.matt.2020.06.028
  24. O. V. Mikhnenko, P.W.M. Blom, and T. Q. Nguyen, Energy Environ. Sci., 8, 1867 (2015). doi: https://doi.org/10.1039/c5ee00925a
  25. D. H. Wang, D. G. Choi, O. O. Park, and J. H. Park, J. Mater. Chem., 20, 4910 (2010). doi: https://doi.org/10.1039/b926105b
  26. Y. H. Huh, I. G. Bae, H. G. Jeon, and B. Park, Opt. Express, 24, A1321 (2016). doi: https://doi.org/10.1364/oe.24.0a1321
  27. J. M. Shin, Y. J. Kim, H. Yun, G. R. Yi, and B. J. Kim, ACS Nano, 11, 2133 (2017). doi: https://doi.org/10.1021/acsnano.6b08342
  28. C. Cui and Y. Li, Aggregate, 2, e31 (2021). doi: https://doi.org/10.1002/agt2.31