DOI QR코드

DOI QR Code

Electrical Properties of 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE Composites

스마트 페인트 센서용 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE 복합소재 제조 및 전기적 특성에 관한 연구

  • Sung Jae Hyoung (School of Materials Science and Engineering, University of Ulsan) ;
  • Eun Seo Kang (School of Materials Science and Engineering, University of Ulsan) ;
  • Yubin Kang (School of Materials Science and Engineering, University of Ulsan) ;
  • Chae Ryeong Kim (School of Materials Science and Engineering, University of Ulsan) ;
  • Chang Won Ahn (Department of Physics and EHSRC, University of Ulsan) ;
  • Byeong Woo Kim (Department of Electrical Engineering, University of Ulsan) ;
  • Jae-Shin Lee (School of Materials Science and Engineering, University of Ulsan) ;
  • Hyoung-Su Han (School of Materials Science and Engineering, University of Ulsan)
  • 형성재 (울산대학교 첨단소재공학부) ;
  • 강은서 (울산대학교 첨단소재공학부) ;
  • 강유빈 (울산대학교 첨단소재공학부) ;
  • 김채령 (울산대학교 첨단소재공학부) ;
  • 안창원 (울산대학교 물리학과 에너지하베스트-스토리지 연구센터) ;
  • 김병우 (울산대학교 전기공학부) ;
  • 이재신 (울산대학교 첨단소재공학부) ;
  • 한형수 (울산대학교 첨단소재공학부)
  • Received : 2024.05.13
  • Accepted : 2024.05.21
  • Published : 2024.07.01

Abstract

Piezoelectric ceramics play an important role in various electronic applications. However, traditional ceramics are difficult to be used in some complicated structures, due to their low flexibility and high brittleness. To solve this problem, this study prepared and investigated ceramic/polymer composites that can utilize a good flexibility of polymers. Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) and 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23) ceramics were selected to fabricate the composites. Ceramic/polymer composites were prepared using various volume fractions of BNST23 ceramics. The distribution of piezoceramic particles in BNST23/PVDF-TrFE composites was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The dielectric and piezoelectric properties of the composites were significantly influenced by the volume fraction of the piezoelectric ceramics. As a result, the highest piezoelectric constant (d33) of 56 pC/N was obtained in a composites with 70% volume fraction of BNST23 ceramics. Accordingly, it is expected that BNST23/PVDF-TrFE composites can be applied to various sensor applications.

Keywords

Acknowledgement

본 연구는 한국수력원자력(주)과 지방자치단체(울산광역시)의 지원으로 수행된 연구임 (2023).

References

  1. X. Cheng, S. Huang, J. Chang, and Z. Li, J. Appl. Phys., 101, 094110 (2007).  doi: https://doi.org/10.1063/1.2730559 
  2. Z. Li, D. Zhang, and K. Wu, J. Am. Ceram. Soc., 85, 305 (2002).  doi: https://doi.org/10.1111/j.1151-2916.2002.tb00089.x 
  3. J. K. Hong, J. S. Lee, H. I. Chee, M. S. Yoon, S. H. Jeong, and K. J. Lim, J. Korean Inst. Electr. Electron. Mater. Eng., 14, 455 (2001).  https://www.koreascience.or.kr/article/JAKO200111920775007.pdf 
  4. H. S. Han, T. A. Duong, C. W. Ahn, B. W. Kim, and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 433 (2023).  doi: https://doi.org/10.4313/JKEM.2023.36.5.2 
  5. S. H. Lee, S. P. Nam, S. G. Lee, and Y. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 23, 771 (2010).  doi: https://doi.org/10.4313/JKEM.2010.23.10.771 
  6. T. G. Lee and S. Nahm, Trans. Electr. Electron. Mater., 20, 385 (2019).  doi: https://doi.org/10.1007/s42341-019-00134-6 
  7. S. Cho, J. H. Yoo, and Y. H. Jeong, Trans. Electr. Electron. Mater., 20, 328 (2019).  doi: https://doi.org/10.1007/s42341-019-00115-9 
  8. H. Wei, H. Wang, Y. Xia, D. Cui, Y. Shi, M. Dong, C. Liu, T. Ding, J. Zhang, Y. Ma, N. Wang, Z. Wang, Y. Sun, R. Wei, and Z. Guo, J. Mater. Chem. C, 6, 12446 (2018).  doi: https://doi.org/10.1039/c8tc04515a 
  9. J. Wu, J. Appl. Phys., 127, 190901 (2020).  doi: https://doi.org/10.1063/5.0006261 
  10. P. K. Panda, B. Sahoo, T. S. Thejas, and M. Krishna, J. Electron. Mater., 51, 938 (2022).  doi: https://doi.org/10.1007/s11664-021-09346-0 
  11. W. Krauss, D. Schutz, F. A. Mautner, A. Feteira, and K. Reichmann, J. Eur. Ceram. Soc., 30, 1827 (2010).  doi: https://doi.org/10.1016/j.jeurceramsoc.2010.02.001 
  12. T. A. Duong, H. S. Han, Y. H. Hong, Y. S. Park, H.T.K. Nguyen, T. H. Dinh, and J. S. Lee, J. Electroceram., 41, 73 (2018).  doi: https://doi.org/10.1007/s10832-018-0161-y 
  13. M. Arbatti, X. Shan, and Z. Y. Cheng, Adv. Mater., 19, 1369 (2007).  doi: https://doi.org/10.1002/adma.200601996 
  14. C. H. Yoon, D. T. Le, D. J. Heo, K. K. Ahn, and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 420 (2012).  doi: https://doi.org/10.4313/JKEM.2012.25.6.420 
  15. R. Gregorio Jr., M. Cestari, and F. E. Bernardino, J. Mater. Sci., 31, 2925 (1996).  doi: https://doi.org/10.1007/BF00356003 
  16. P. Gowdhaman, K. Antonyraj, and V. Annamalai, Int. J. Adv. Sci. Res., 1, 322 (2015).  doi: https://doi.org/10.7439/IJASR.V1I8.2511 
  17. M. Shoorangiz, Z. Sherafat, and E. Bagherzadeh, Ceram. Int., 48, 15180 (2022).  doi: https://doi.org/10.1016/j.ceramint.2022.02.047 
  18. V. Jella, S. Ippili, J. H. Eom, J. Choi, and S. G. Yoon, Nano Energy, 53, 46 (2018).  doi: https://doi.org/10.1016/j.nanoen.2018.08.033 
  19. D. B. Deutz, N. T. Mascarenhas, S. van der Zwaag, and W. A. Groen, J. Am. Ceram. Soc., 100, 1108 (2017).  doi: https://doi.org/10.1111/jace.14698 
  20. T. Sareein, W. Thamjaree, W. Nhuapeng, and T. Tunkasiri, Adv. Mat. Res., 55, 141 (2008).  doi: https://doi.org/10.4028/www.scientific.net/AMR.55-57.141 
  21. F. Li and R. Zuo, J. Mater. Sci.: Mater. Electron., 25, 2730 (2014).  doi: https://doi.org/10.1007/s10854-014-1936-9 
  22. L. Lu, W. Ding, J. Liu, and B. Yang, Nano Energy, 78, 105251 (2020).  doi: https://doi.org/10.1016/j.nanoen.2020.105251 
  23. K. S. Ramadan, D. Sameoto, and S. Evoy, Smart Mater. Struct., 23, 033001 (2014).  doi: https://doi.org/10.1088/0964-1726/23/3/033001 
  24. W. Nhuapeng and T. Tunkasiri, J. Am. Ceram. Soc., 85, 700 (2002).  doi: https://doi.org/10.1111/j.1151-2916.2002.tb00154.x 
  25. I. Babu, D. A. van den Ende, and G. de With, J. Phys. D: Appl. Phys., 43, 425402 (2010).  doi: https://doi.org/10.1088/0022-3727/43/42/425402 
  26. U. Sundar, Z. Lao, and K. Cook-Chennault, Polymers, 11, 2123 (2019). doi: https://doi.org/10.3390/polym11122123 
  27. B. Zhou, R. Li, J. Cai, J. Xu, Z. Zhao, and J. Pei, Mater. Res. Express, 5, 095510 (2018).  doi: https://doi.org/10.1088/2053-1591/aad8a4 
  28. D. T. Le, N. B. Do, D. U. Kim, I. Hong, I. W. Kim, and J. S. Lee, Ceram. Int., 38, S259 (2012).  doi: https://doi.org/10.1016/j.ceramint.2011.04.096 
  29. G. Zhang and M. S. Wu, Int. J. Eng. Sci., 48, 37 (2010).  doi: https://doi.org/10.1016/j.ijengsci.2009.06.006 
  30. J. H. Seol, J. S. Lee, H. N. Ji, Y. P. Ok, G. P. Kong, K. S. Kim, C. Y. Kim, and W. P. Tai, Ceram. Int., 38, S263 (2012).  doi: https://doi.org/10.1016/j.ceramint.2011.04.097 
  31. I. Babu and G. de With, Compos. Sci. Technol., 91, 91 (2014).  doi: https://doi.org/10.1016/j.compscitech.2013.11.027