과제정보
이 논문은 i) 2020학년도 한국해양대학교 신진교수 정착연구 지원사업 연구비와, ii) 2024년도 정부(산업통상자원부)의 재원으로 한국산업기술 진흥원의 지원(P0017006, 2024년, 산업혁신인재성장지원사업)을 받아 수행된 연구임
참고문헌
- Balch, T. and Arkin, R.C., 1998. Behavior-based formation control for multirobot teams, IEEE transactions on robotics and automation, 14(6), pp.926-939. https://doi.org/10.1109/70.736776
- Barnes, L., Field, M. and Valavanis, K., 2007. Unmanned ground vehicle swarm formation control using potential fields, 2007 Mediterranean Conference on Control andAutomation. IEEE, 2007.
- Barnes, L., Alvis, W., Fields, M., Valavanis, K., and Moreno, W., 2006. Swarm formation control with potential fields formed by bivariate normal functions, 2006 14th Mediterranean Conference on Control and Automation. IEEE, 2006.
- Bibuli, M., Bruzzone, G., Caccia, M., Gasparri, A., Priolo, A., and Zereik, E., 2014. Swarm-based path-following for cooperative unmanned surface vehicles. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 228(2) pp.192-207. https://doi.org/10.1177/1475090213516108
- Borenstein, J. and Koren, Y., 1989. Real-time obstacle avoidance for fast mobile robots, IEEE Transactions on systems, Man, and Cybernetics 19(5) pp.1179-1187. https://doi.org/10.1109/21.44033
- Borenstein, J., and Koren, Y., 1991. The vector field histogram-fast obstacle avoidance for mobile robots, IEEE transactions on robotics and automation, 7(3), pp.278-288. https://doi.org/10.1109/70.88137
- Chakravarthy, A. and Ghose, D., 1998. Obstacle avoidance in a dynamic environment: A collision cone approach, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 28(5), pp.562-574. https://doi.org/10.1109/3468.709600
- Cui, R., Ge, S.S., How, B.V.E. and Choo, Y.S., 2010. Leader-follower formation control of underactuated autonomous underwater vehicles, Ocean Engineering, 37(17-18), pp.1491-1502. https://doi.org/10.1016/j.oceaneng.2010.07.006
- Ge, S.S. and Cui, Y.J., 2002. Dynamic motion planning for mobile robots using potential field method, Autonomous robots 13.3 (2002), pp.207-222.
- Ghommam, J. and Saad, M., 2017. Adaptive leader-follower formation control of underactuated surface vessels under asymmetric range and bearing constraints, IEEE Transactions on Vehicular Technology, 67(2), pp. 852-865 https://doi.org/10.1109/TVT.2017.2760367
- Kania, E.B., 2019. Chinese military innovation in artificial intelligence. Testimony to the US-China Economic and Security Review Commission.
- Khatib, M., and Chatila, R., 1995. An extended potential field approach for mobile robot sensor-based motions, Proc. International Conference on Intelligent Autonomous Systems (IAS'4)., 1995
- Kim, J.W., 2020, Local path planning for autonomous vehicles based model predictive control using velocity obstacles potential field in emergency situation, M.S. Korea Institute of Science and Technology.
- Ko, N.Y. and Lee, H.B., 1996. Avoidability measure in moving obstacle avoidance problem and its use for robot motion planning, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS'96, Vol. 3
- Kuwata, Y., Wolf, M.T., Zarzhitsky, D and Huntsberger, T.L, 2013. Safe maritime autonomous navigation with COLREGS, using velocity obstacles, IEEE Journal of Oceanic Engineering, 39(1), pp.110-119. https://doi.org/10.1109/JOE.2013.2254214
- Leonard, N.E. and Fiorelli, E., 2001. Virtual leaders, artificial potentials and coordinated control of groups, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228), IEEE, pp.2968-2973.
- Lewis, M.A. and Tan, K.H., 1997. High precision formation control of mobile robots using virtual structures. Autonomous robots, 4(4), pp.387-403. https://doi.org/10.1023/A:1008814708459
- Oh, Y.S., Park, J.H., Kim, J.H. and Huh, U.Y., 2011. Formation conatrol and obstacle avoidance of mobile robot for moving object tracking, Journal of Electrical Engineering and Technology(JEET), 60(4) pp.856-861. https://doi.org/10.5370/KIEE.2011.60.4.856
- Park, J.H. and Huh, U.Y., 2015. Obstacle avoidance of leader-follower robots based on potential field and flexible formation. The Transactions of the Korean Institute of Electrical Engineers. pp.1389-1390.
- Park, J.H., Lee, Y.J., Jung, J.D., Kang, M.J. Choi, H.T. and Choi J.W., 2021, Preliminary study of potential field based formation controlfor cooperative navigation of multiple autonomous surface vehicles, Institute of Control Robotics and Systems, pp.290-291.
- Rimon, E. and Koditschek, D.E., 1992. Exact robot navigation using artificial potential functions, IEEE Transactions on Robotics And Automation, 8(5), pp.501-518. https://doi.org/10.1109/70.163777
- Sadowska, A., den Broek, T. V., Huijberts, H., van de Wouw, N., Kostic, D., and Nijmeijer, H., 2011. A virtual structure approach to formation control of unicycle mobile robots using mutual coupling. International Journal of Control, 84(11), pp.1886-1902. https://doi.org/10.1080/00207179.2011.627686
- Son, N.S., Han, J.W., Pyo, C.S. and Park, K,R., 2020. On the sea surveillance and illegal ship control by using unmanned surface vehicle swarm. Society of Naval Architects of Korea, 2020.
- Sonnenburg, C.R. and Woolsey, C.A., 2013, Modeling, identification, and control of an unmanned surface vehicle. Journal of Field Robotics, 2013, 30(3), pp. 371-398. https://doi.org/10.1002/rob.21452
- Sun, Z., Zhang, G., Lu, Y. and Zhang, W., 2018. Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation. ISA transactions, 72, pp.15-24. https://doi.org/10.1016/j.isatra.2017.11.008
- Tak, M.H., Joo, Y.H., 2014. Formation control algorithm for swarm robots using virtual force. The Transactions of the Korean Institute of Electrical Engineers, 63(10), pp. 1428-1433. https://doi.org/10.5370/KIEE.2014.63.10.1428
- Tychonievich, L., Zaret, D., Mantegna, J., Evans, R., Muehle, E., and Martin, S., 1989. A maneuvering-board approach to path planning with moving obstacles, Proceedings of the 11th international joint conference on Artificial intelligence, Vol.2, pp.1017-1021.
- Ulrich, I. and Borenstein, J., 1998. VFH+: Reliable obstacle avoidance for fast mobile robots, Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146). Vol. 2.
- Woo, J.H. and Kim, N.K., 2020, Collision avoidance for an unmanned surface vehicle using deep reinforcement learning, Ocean Eng ineering, 199 (2020): 107001.
- Yu, Z., Bao, X. and Nonami, K., 2008, Course keeping control of an autonomous boat using low cost sensors. Journal of System Design and Dynamics, 2(1), pp.389-400. https://doi.org/10.1299/jsdd.2.389