DOI QR코드

DOI QR Code

Distribution and diversity of rhizosphere bacteria of mixed halophytes vegetation native to the Goraebul sand dune, Korea : Approaches to coastal dune conservation

한반도 고래불 해안사구에 자생하는 혼합 염생식물군락 근권세균의 분포 및 다양성 고찰 : 해안사구 보전을 위한 접근

  • Jong Myong Park (Water Quality Research Institute, Waterworks Headquarters) ;
  • Ji Won Hong (Department of Hydrogen and Renewable Energy, Kyungpook National University) ;
  • Ki-Eun Lee (Species Diversity Research Division, National Institute of Biological Resources) ;
  • Jong-Guk Kim (School of Life Science, Kyungpook National University) ;
  • Young-Hyun You (Species Diversity Research Division, National Institute of Biological Resources)
  • 박종명 (인천상수도사업본부 맑은물연구소) ;
  • 홍지원 (경북대학교 수소 및 신재생에너지학과) ;
  • 이기은 (국립생물자원관 생물종다양성연구과) ;
  • 김종국 (경북대학교 생명과학부) ;
  • 유영현 (국립생물자원관 생물종다양성연구과)
  • Received : 2024.02.19
  • Accepted : 2024.03.08
  • Published : 2024.06.30

Abstract

Coastal dunes must be conserved. Their native halophytes support coastal geography while their symbiotic microorganisms help vegetation thrive. The Goraebul coast has the largest, well-conserved dune system on the East Sea of the Korean Peninsula due to a climax mixed halophyte (C. soldanella, C. kobomugi, and E. mollis) vegetation support. This study identified rhizobacteria and their diversity in mixed halophyte communities unique to Goraebul. Five phyla, 12 genera, and 21 species were identified based on 16S rDNA sequences from 65 isolates. The phylum Bacillota, class Bacillota, order Bacillales, and family Bacillaceae were identified, with Bacillus as the dominant genus (46.15%). The richness and Shannon's diversity were higher at the species than at the genus level due to the dominance of Bacillus; however, various Bacillus species (7) were identified. Therefore, the climax mixed vegetation adapted to the Goraebul coast may exert natural selection pressure in favor of the common characteristics of Bacillus. However, despite this advantage, the Shannon equitability (0.86), Simpson (0.08), and Shannon diversity (2.79) indexes indicate a stable rhizosphere cluster and the climax mixed vegetation is affected by symbiotic relationships between healthy rhizosphere microbiota.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the ministry of Environment (MOE) of the Republic of Korea (NIBR202405101).

References

  1. Abiala, M., Sadhukhan, A., Muthuvel, J., Shekhawat, R.S., Yadav, P. and Sahoo, L. 2022. Rhizosphere Priestia species altered cowpea root transcriptome and enhanced growth under drought and nutrient deficiency. Planta 257(1), 11.
  2. Adesina, M.F., Grosch, R., Lembke, A., Vatchev, T.D. and Smalla, K. 2009. In vitro antagonists of Rhizoctonia solani tested on lettuce: rhizosphere competence, bio-control efficiency and rhizosphere microbial community response. FEMS Microbiol. Ecol. 69(1), 62-74. https://doi.org/10.1111/j.1574-6941.2009.00685.x
  3. Bang, H.J. and Lee, G.R. 2011. Geomorphological properties and changes of Goreabul sand beach in Yeongdeok. J. Geol. Soc. Korea. 18(3), 83-92
  4. Bird, E.C.F. 1976. Coasts: An Introduction to Systematic Geomorphology, Australian National University Press: Canberra, Australia, pp. 21-22.
  5. Bloemberg, G.V. and Lugtenberg, B.J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4, 343-350. https://doi.org/10.1016/S1369-5266(00)00183-7
  6. Chapman, V.J. 1974. Salt marshes and salt deserts of the world. In Ecology of halophytes, Robert, J.R., William, H.Q., Eds., Academic Press: New York, NY, USA, pp. 3-22.
  7. Chen, Y., Wang, J., Yang, N., Wen, Z., Sun, X., Chai, Y. and Ma, Z. 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 9(1), 3429. https://doi.org/10.1038/s41467-018-05683-7
  8. Cheng, S., Jiang, J.W., Tan, L.T., Deng, J.X., Liang, P.Y., Su, H., Sun, Z.X. and Zhou, Y. P. 2022. Plant growth-promoting ability of mycorrhizal Fusarium Strain KB-3 enhanced by its IAA producing endohyphal bacterium, Klebsiella aerogenes. Front. Microbiol. 13, 855399. https://doi.org/10.3389/fmicb.2022.855399
  9. Chhetri, G., Kim, I., Kim, J., So, Y. and Seo, T. 2022. Chryseobacterium tagetis sp. nov., a plant growth promoting bacterium with an antimicrobial activity isolated from the roots of medicinal plant (Tagetes patula). J. Antibiot. (Tokyo) 75(6), 312-320. https://doi.org/10.1038/s41429-022-00525-7
  10. David, A.S., Seabloom, E.W. and May, G. 2016. Plant host species and geographic distance affect the structure of aboveground fungal symbiont communities, and environmental filtering affects belowground communities in a coastal dune ecosystem. Microb. Ecol. 71, 912-926. https://doi.org/10.1007/s00248-015-0712-6
  11. Dubey, A., Malla, M.A., Kumar, A., Dayanandan, S. and Khan, M.L. 2022. Plants endophytes: Unveiling hidden agenda for bioprospecting toward sustainable agriculture. Crit. Rev. Biotechnol. 4, 1210-1231.
  12. Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X. and Borriss, R. 2019. Bacillus velezensis FZB42 in 218: The gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 16(9), 2491.
  13. Fierer, N. and Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 13, 626-631. https://doi.org/10.1073/pnas.0507535103
  14. Forsyth, L.M., Smith, L.J. and Aitken, E.A. 2006. Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity. Mycol. Res. 11, 929-935. https://doi.org/10.1016/j.mycres.2006.03.008
  15. Godfrey, P.J. 1977. Climate, plant response and development of dunes on barrier beaches along the U.S. east coast. Int. J. Biometeorol. 21, 23-216. https://doi.org/10.1007/BF01552874
  16. Goldstein, E.B., Moore, L.J. and Duran Vinent, O. 2017. Lateral vegetation growth rates exert control on coastal foredune "hummockiness" and coalescing time. Earth Surf. Dynam. 5, 417-427.
  17. Gorai, P.S., Ghosh, R., Mandal, S., Ghosh, S., Chatterjee, S., Gond, S.K. and Mandal, N.C. 2021. Bacillus siamensis CNE6- a multifaceted plant growth promoting endophyte of Cicer arietinum L. having broad spectrum antifungal activities and host colonizing potential. Microbiol. Res. 252, 126859. https://doi.org/10.1016/j.micres.2021.126859
  18. Hesp, P.A. 1989. A review of biological and geomorphological processes involved in the initiation and development of incipient foredunes. Proc. Royal Soc. B: Biol. Sci. 96, 181-201. https://doi.org/10.1017/S0269727000010927
  19. Hill, K. Dune Habitats, Smithsonian Marine Station (SMS): Fort Pierce, FL, USA, 218.
  20. Hong, S.H., Lee, M.H., Kim, J.S. and Lee E.Y. 2012. An evaluation of plant growth promoting activities and salt tolerance of rhizobacteria isolated from plants native to coastal sand dunes. Microbiol. Biotechnol. Lett. 4(3), 261-267. https://doi.org/10.4014/kjmb.1208.08003
  21. How Sand Dunes Work. Available online: https://science.howstuffworks.com/environmental/earth/geolog y/ sand-dune.htm (accessed on 19 August 22).
  22. Jacquemyn, H., Waud, M., Lievens, B. and Brys, R. 2016. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Ann. Bot. 118, 105-114. https://doi.org/10.1093/aob/mcw015
  23. Khan, S.A., Hamayun, M., Rim, S.O., Lee, I.J., Seu, J.C., Choo, Y.S., Jin, I.N., Kim, S.D., Lee, I.K. and Kim, J.G. 2008a. Isolation of endophytic fungi capable of plant growth promotion from monocots inhabited in the coastal sand dunes of Korea. J. Life Sci. 18(1), 1355-1359. https://doi.org/10.5352/JLS.2008.18.10.1355
  24. Khan, S.A., Hamayun, M., Yoon, H., Kim, H.Y., Suh, S.J., Hwang, S.K., Kim, J.M., Lee, I.J., Choo, Y.-S., Yoon, U.H., Kong, W.S., Lee, B.M. and Kim, J.G. 2008b. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8, 231.
  25. Khare, E., Mishra, J. and Arora, N.K. 2018. Multi faceted interactions between endophyte sand plant: developments and prospects. Front. Microbiol. 9, 2732. https://doi.org/10.3389/fmicb.2018.02732
  26. Kim, H. and Yu, SM. 2020. Chryseobacterium salivictor sp. nov., a plant-growth-promoting bacterium isolated from freshwater. Antonie Van Leeuwenhoek 113(7), 989-995. https://doi.org/10.1007/s10482-020-01411-8
  27. Kim, M., You, Y.H., Yoon, H.J., Kim, H., Seo, Y.G., Khalmuratova, I., Shin, J.H., Lee, I.J., Choo, Y.S. and Kim, J.G. 2012. Genetic diversity of endophytic fungal strains isolated from the roots of coastal plants in ulleung island for restoration of coastal ecosystem. J. Life Sci. 22(1), 1384-1391. https://doi.org/10.5352/JLS.2012.22.10.1384
  28. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. https://doi.org/10.1007/BF01731581
  29. Kong, B.W., Cheong, C.J. and Ra, D.G. 2014. Distribution of halophytes at coastal wetland in Suncheon bay. J. Korean Soc. Environ. Eng. 15(2), 130-139.
  30. Kong, B.W., Lee, W.J., Park, M.H., Lee, W.J., Seo, H.N., Ra, D.G. and Cheong, C.J. 2019. Distribution characteristics of halophyte according to soil environment in coastal wetland of the Suncheon Bay. J. Korean Soc. Environ. Eng. 2(1), 16-22.
  31. Kong, W.S. and David, W. 1993. The plant geography of Korea with an emphasis on the alpine zones. In Geobotany, Springer: New York, NY, USA, 1993.
  32. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096
  33. Lambshead, P.J.D., Platt, H.M. and Shaw, K.M. 1983. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J. Nat. Hist. 17, 859-874. https://doi.org/10.1080/00222938300770671
  34. Lee, E.Y. and Hong, S.H. 2013. Plant growth-promoting ability by the newly isolated bacterium Bacillus aerius MH1RS1 from indigenous plant in sand dune. J. Kor. Soc. Environ. Eng. 35(1), 687-693. https://doi.org/10.4491/KSEE.2013.35.10.687
  35. Liang, J., Wang, S., Yiming, A., Fu, L., Ahmad, I., Chen, G. and Zhu, B. 2019. Pseudomonas bijieensis sp. nov., isolated from cornfield soil. Int. J. Syst. Evol. Microbiol. 71(3).
  36. Lim, J.H., Kim, J.G. and Kim, S.D. 2008. Selection of the auxin and ACC deaminase producing plant growth promoting rhizobacteria from the coastal sand dune plants. Microbiol. Biotechnol. Lett. 36(4), 268-275.
  37. Mahmoud, F.M., Krimi, Z., Macia-Vicente, J.G., Errahmani, M.B. and Lopez-Llorca, L.V. 2017. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes. Rev. Iberoam. Micol. 34, 116-120. https://doi.org/10.1016/j.riam.2016.06.007
  38. Malandrakis, A., Daskalaki, E.R., Skiada, V., Papadopoulou, K.K. and Kavroulaki,s N. 2018. A Fusarium solani endophyte vs fungicides: Compatibility in a Fusarium oxysporum f.sp. radicis-lycopersici-tomato pathosystem. Fungal Biol. 122, 1215-1221. https://doi.org/10.1016/j.funbio.2018.10.003
  39. Margalef, R. 1958. Information theory in ecology. Gen. Syst. 3, 36-71.
  40. Mendes, R.S., Evangelista, L.R., Thomaz, S.M., Agostinho, A.A. and Gomes, L.C. 2008. Unified index to measure ecological diversity and species rarity. Ecography 31, 450-456. https://doi.org/10.1111/j.0906-7590.2008.05469.x
  41. Mengistu, A.A. 2022. Endophytes: Colonization, behaviour, and their role in defense mechanism. Int. J. Microbiol. 22, 6927219.
  42. Min, Y.J., Park, M.S., Fong, J.J., Quan, Y., Jung, S. and Lim, Y.W. 2014. Diversity and saline resistance of endophytic fungi associated with Pinus thunbergii in coastal shelter belts of Korea. Microbiol. Biotechnol. Lett. 24(3), 324-330. https://doi.org/10.4014/jmb.1310.10041
  43. Molewski, P. 2021. Anthropogenic degradation of dunes within a city: A disappearing feature of the cultural landscape of Torun (Poland). J. Maps. 17, 162-169. https://doi.org/10.1080/17445647.2020.1736196
  44. Navarro-Torre, S., Carro, L., Igual, J.M. and Montero-Calasanz, M.D.C. 2021. Rossellomorea arthrocnemi sp. nov., a novel plant growth-promoting bacterium used in heavy metal polluted soils as a phytoremediation tool. Int. J. Syst. Evol. Microbiol. 71(1), 005015.
  45. Nayak, S., Behera, S. and Dash, P.K. 2019. Potential of microbial diversity of coastal sanddunes: Need for exploration in Odisha Coast of India. Sci. World J. 219, 2758501.
  46. NIE (National Institute of Environmental, Republic of Korea). 2008. Research on Coastal Landscape and the Conservational Strategy (II), case of the west coast, Korea. Ministry of Environment: Sejong, Republic of Korea.
  47. NIE (National Institute of Environmental, Republic of Korea). 2009. Research on Coastal Landscape and the Conservational Strategy (27-29), Ministry of Environment: Sejong, Republic of Korea.
  48. Orozco-Mosqueda, M.D.C., Rocha-Granados, M.D.C., Glick, B.R. and Santoyo, G. 2018. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 28, 25-31.
  49. Pandey, S. and Gupta, S. 2020. Diversity analysis of ACC deaminase producing bacteria associated with rhizosphere of coconut tree (Cocos nucifera L.) grown in Lakshadweep islands of India and their ability to promote plant growth under saline conditions. J. Biotechnol. 324, 183-197. https://doi.org/10.1016/j.jbiotec.2020.10.024
  50. Park, J.M. and You, Y-.H. 2023. Culturable endophyte fungi of the well-conserved coastal dune vegetation located on the East coast of the Korean Peninsula. J. Mar. Sci. Eng. 11(4), 734. https://doi.org/10.3390/jmse11040734
  51. Park, J.M., Hong, J.W., Son, J.S., Hwang, Y.J., Cho, H.M., You, Y.H. and Ghim, S.Y. 2018. A strategy for securing unique microbial resources-Focusing on Dokdo islands-derived microbial resources. Isr. J. Ecol. Evol. 64, 1-15. https://doi.org/10.1163/22244662-20181024
  52. Park, J.M., Hong, J.W., You, Y.H. and Kim, J.G. 2021a. Endophytic fungi of emersed halophytes in river deltas and tidal flats of the Korean Ramsar wetlands. J. Mar. Sci. Eng. 9, 430.
  53. Park, J.M., Kim, B., Cho, Y.C., Lee, B.H., Hong, J.W. and You, Y.H. 2021b. Rhizoplane and rhizosphere fungal communities of geographically isolated Korean Bellflower (Campanula takesimana Nakai). Biology 1, 138.
  54. Ramirez, V., Martinez, J., Bustillos-Cristales, M.D.R., Cataneda-Antonio, D., Munive, J.A. and Baez, A. 2022. Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum. J. Appl. Microbiol. 132(1), 470-482. https://doi.org/10.1111/jam.15179
  55. Ryan, M.J., McCluskey, K., Verkleij, G., Robert, V. and Smith, D. 2019. Fungal biological resources to support international development: Challenges and opportunities. World J. Microbiol. Biotechnol. 35, 139.
  56. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  57. Seena, S. and Sridhar, K.R. 2004. Endophytic fungal diversity of two sand dune wild legumes from the southwest coast of India. Can. J. Microbiol. 5, 115-121.
  58. Seo, Y.G., Kim, M., You, Y.H., Yoon, H.J., Woo, J.R., Lee, G.M. and Kim, J.G. 2012. Genetic diversity of endophytic fungi isolated from the roots of halophytes naturally growing in Suncheon Bay. Kor. J. Mycol. 4(1), 7-10.
  59. Shafi, J., Tian, H. and Ji, M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. 31(3), 446-459.
  60. Sharma, K., Sharma, S., Vaishnav, A., Jain, R., Singh, D., Singh, H.B., Goel, A. and Singh, S. 2022. Salt-tolerant PGPR strain Priestia endophytica SK1 promotes fenugreek growth under salt stress by inducing nitrogen assimilation and secondary metabolites. J. Appl. Microbiol. 133(5), 2802-2813. https://doi.org/10.1111/jam.15735
  61. Sherpa, M.T., Bag, N., Das, S., Haokip, P. and Sharma, L. 2021. Isolation and characterization of plant growth promoting rhizobacteria isolated from organically grown high yielding pole type native pea (Pisum sativum L.) variety Dentami of Sikkim, India. Curr. Res. Microb. Sci. 2, 100068.
  62. Stanchev, H., Stancheva, M. and Young, R. 2015. Implications of population and tourism development growth for Bulgarian coastal zone. J. Coast. Conserv. 19, 59-72. https://doi.org/10.1007/s11852-014-0360-x
  63. Tomer, S., Suyal, D.C., Shukla, A., Rajwar, J., Yadav, A., Shouche, Y. and Goel, R. 2017. Isolation and characterization of phosphate solubilizing bacteria from Western Indian Himalayan soils. 3 Biotech. 7(2), 95.
  64. Torbati, M., Arzanlou, M. and da Silva Santos, A.C. 2021. Fungicolous Fusarium species: Ecology, diversity, isolation, and identification. Curr. Microbiol. 78, 285-2859.
  65. Vousdoukas, M.I., Ranasinghe, R., Mentaschi, L., Plomaritis, T.A., Athanasiou, P., Luijendijk, A. and Feyen, L. 2022. Sandy coastlines under threat of erosion. Nat. Clim. Change 1, 260-263.
  66. Whittaker, R.H. 1977. Evolution of species diversity in land communities. Evol. Biol. 1, 1-67.
  67. Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173(2), 697-70. https://doi.org/10.1128/jb.173.2.697-703.1991
  68. Yan, J., Li, Y., Yan, H., Chen, W.F., Zhang, X., Wang, E.T., Han, X.Z. and Xie, Z.H. 2017. Agrobacterium salinitolerans sp. nov., a saline-alkaline-tolerant bacterium isolated from root nodule of Sesbania cannabina. Int. J. Syst. Evol. Microbiol. 67(6), 1906-1911. https://doi.org/10.1099/ijsem.0.001885
  69. Yeh, Y.H. and Kirschner, R. 2019. Diversity of endophytic fungi of the coastal plant Vitex rotundifolia in Taiwan. Microbes. Environ. 34, 59-63. https://doi.org/10.1264/jsme2.ME18075
  70. You, Y.H., Jin, Y.J., Kang, S.M., Oh, S.J., Lee, M.C. and Kim, J.G. 2015. Plant growth-promoting activity and identification of endophytic fungi isolated from native plant in East coast. Kor. J. Mycol. 51(1), 14-20.
  71. You, Y.H., Park, J.M., Lim, S.H., Kang, S.M., Park, J.H., Lee, I.J. and Kim, J.G. 2016. Gibberellin A7 production by Aspergillus tubingensis YH13 and cultural characteristics of endophytic fungi isolated from Tetragonia tetragonoides in Dokdo islands. Kor. J. Mycol. 52(1), 32-39.
  72. You, Y.H., Park, J.M., Seo, Y.G., Lee, W., Kang, M.S. and Kim, J.G. 2017. Distribution, characterization, and diversity of the endophytic fungal communities on Korean seacoasts showing contrasting geographic conditions. Mycobiology 45(3), 150-159. https://doi.org/10.5941/MYCO.2017.45.3.150
  73. You, Y.H., Seo, Y.G., Yoon, H.J., Kim, H., Kim, Y.E., Khalmuratova, I., Rim, S.O., Kim, C.M. and Kim JG. 2013. Endophytic fungal diversity associated with the roots of coastal sand-dune plants in the Sindu-ri coastal sand dune, Korea. Microbiol. Biotechnol. Lett. 41(3), 300-310. https://doi.org/10.4014/kjmb.1305.05003
  74. You, Y.H., Yoon, H.J., Kim, H., Lim, S.H., Shin, J.H., Lee, I.J., Choo, Y.S. and Kim, J.G. 2013. Plant growth-promoting activity and genetic diversity of endophytic fungi isolated from native plants in Dokdo Islands for restoration of a coastal ecosystem. J. Life Sci. 23(1), 95-101. https://doi.org/10.5352/JLS.2013.23.1.95
  75. You, Y.H., Yoon, H.J., Seo, Y.G., Kim, M., Kang, M.S., Kim, C.M., Ha, S.C., Cho, G.Y. and Kim, J.G. 2012. Genetic diversity of culturable endophytic fungi isolated from halophytes naturally growing in muan salt marsh. J. Life Sci. 22(7), 97-98.
  76. You, Y.H., Yoon, H.J., Woo, J.R., Seo, Y.G., Kim, M., Choo, Y.S. and Kim, J.G. 2011. Plant growth-promoting activity of endophytic fungi isolated from the roots of native plants in Dokdo Islands. J. Life Sci. 21(11), 1619-1624. https://doi.org/10.5352/JLS.2011.21.11.1619
  77. You, Y.H., Yoon, H.J., Woo, J.R., Seo, Y.G., Kim, M., Lee, G.M. and Kim, J.G. 2012. Diversity of endophytic fungi from the roots of halophytes growing in Go-chang salt marsh. Kor. J. Mycol. 4(2), 86-92.
  78. You, Y.H., Yoon, N.G., Yoon, H.J., Kim, H., Lim, S.H., Choo, Y.S. and Kim, J.G. 2014. Endophytic fungal diversity isolated from the root of halophytes in Taean Peninsula. Kor. J. Mycol. 42(1), 269-275. https://doi.org/10.4489/KJM.2014.42.4.269