과제정보
The authors are grateful to the economic funding provided by Science and Technology Bureau of Jingzhou (2023EC38), and Natural Science Foundation of Hubei Province (2023AFB804).
참고문헌
- Al-Azzawi, M., Yu, T. and Hadi, M.N.S. (2018), "Factors affecting the bond strength between the fly ash-based geopolymer concrete and steel reinforcement", Structures, 14, 262-272. https://doi.org/10.1016/j.istruc.2018.03.010.
- Albitar, M., Visintin, P., Ali, M.M., Lavigne, O. and Gamboa, E. (2017), "Bond slip models for uncorroded and corroded steel reinforcement in class-F fly ash geopolymer concrete", J. Mater. Civil Eng., 29(1), 04016186. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001713.
- Ali, S., Sheikh, M.N., Sargeant M. and Hadi, M.N.S. (2020), "Influence of polypropylene and glass fibers on alkali- activated slag/fly ash concrete", ACI. Struct. J., 117(4), 183-192. http://dx.doi.org/10.14359/51723509.
- Alomayri, T., Shaikh, F.U.A. and Low I.M. (2014), "Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites", Compos. B. Eng., 60, 36-42. https://doi.org/10.1016/j.compositesb.2013.12.036.
- Alzeebaree, R., Gulsan, M.E., Nis, A., Mohammedameen, A. and Cevik, A. (2018), "Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks", Steel Compos. Struct., 29(2), 201-218. https://doi.org/10.12989/scs.2018.29.2.201.
- Castel, A. and Foster, S.J. (2015), "Bond strength between blended slag and class F fly ash geopolymer concrete with steel reinforcement", Cem. Concr. Res., 72, 48-53. https://doi.org/10.1016/j.cemconres.2015.02.016.
- Celik, A.I. and Ozkilic, Y.O. (2023), "Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder", Steel Compos. Struct., 46(5), 689-707. https://doi.org/10.12989/scs.2023.46.5.689.
- Dahou, Z., Castel, A. and Noushini, A. (2016), "Prediction of the steel-concrete bond strength from the compressive strength of Portland cement and geopolymer concretes", Constr. Build. Mater., 119, 329-342. https://doi.org/10.1016/j.conbuildmat.2016.05.002.
- Davidovits, J. (1994), "Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement", J. Mater. Educ., 16, 91-139.
- Davidovits, J. (2020), Geopolymer Chemistry and Applications. 5th ed., Geopolymer Institute, Saint Quentin, France.
- Fang, H. and Visintin, P. (2021), "Behavior of geopolymer concrete-filled circular steel tube members", Proceedings in Civ. Eng., 4, 593-597. https://doi.org/10.1002/cepa.1336.
- Fernandez-Jimenez, A.M., Palomo, A. and Lopez-Hombrados, A.C. (2006), "Engineering properties of alkali-activated fly ash concrete", ACI Mater. J., 103(2), 106-112. https://doi.org/10.14359/15261.
- Ganesan, N., Indira, P.V. and Santhakumar, A. (2013), "Prediction of ultimate strength of reinforced geopolymer concrete wall panels in one-way action", Constr. Build. Mater., 48, 91-97. https://doi.org/10.1016/j.conbuildmat.2013.06.090.
- GB/T 288.1-2010, Metallic Materials-Tensile Testing, Ministry of Construction of P. R. of China; Beijing,
- Guo, Z.H. (1997), Strength and Deformation Test Foundation and Constitutive Relationship of Concrete, Tsinghua University Press, Beijing,
- Hadi, M.N.S., Farhan, N.A. and Sheikh, M.N. (2017), "Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method", Constr. Build. Mater., 140, 424-431. https://doi.org/10.1016/j.conbuildmat.2017.02.131.
- Huang, J.Q., Kumar, S. and Dai, J.G. (2023), "Flexural performance of steel-reinforced geopolymer concrete one-way slabs: experimental and numerical investigations", Constr. Build. Mater., 366, 130098. https://doi.org/10.1016/j.conbuildmat.2022.130098.
- Kim, J.S. and Park J. (2014), "An experimental evaluation of development length of reinforcements embedded in geopolymer concrete", Appl. Mech. Mater., 578-579, 441-444. https://doi.org/10.4028/www.scientific.net/AMM.578-579.441.
- Kumar, S., Chen, B., Xu, Y. and Dai, J. (2022), "Axial-flexural behavior of FRP grid-reinforced geopolymer concrete sandwich wall panels enabled with FRP connectors", J. Build. Eng., 47, 103907. https://doi.org/10.1016/j.jobe.2021.103907.
- Kumaravel, S. and Thirugnanasambandam, S. (2013), "Flexural behaviour of reinforced low calcium fly ash based geopolymer concrete beam", Global J. Res. Eng., 13, 9-13.
- Kusbiantoro, A., Nuruddin, M.F., Shafiq, N. and Qazi, S.A. (2012), "The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete", Constr. Build. Mater., 36, 695-703. https://doi.org/10.1016/j.conbuildmat.2012.06.064.
- Luan, C.C., Shi, X.S., Zhang, K.Y., Utashev, N. and Wang, Q. (2021), "A mix design method of fly ash geopolymer concrete based on factors analysis", Constr. Build. Mater., 272, 121612. https://doi.org/10.1016/j.conbuildmat.2020.121612.
- Maranan, G., Manalo, A., Karunasena, K. and Benmokrane, B. (2015), "Bond stress-slip behavior: case of GFRP bars in geopolymer concrete", J. Mater. Civ. Eng., 27(1), 04014116. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001046.
- Mehta, A. and Siddique R. (2017), "Sulfuric acid resistance of fly ash based geopolymer concrete", Constr. Build. Mater., 146, 136-143. https://doi.org/10.1016/j.conbuildmat.2017.04.077.
- Nagan, S. and Mohana R. (2014), "Behaviour of geopolymer ferrocement slabs subjected to impact", IJST-T Civ. Eng., 38, 223-233.
- Rajarajeswari, A. and Dhinakaran, G. (2016), "Compressive strength of GGBFS based GPC under thermal curing", Constr. Build. Mater., 126, 552-559. https://doi.org/10.1016/j.conbuildmat.2016.09.076.
- Sarker, P.K. (2011), "Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete", Mater. Struct., 44, 1021-1030. https://doi.org/10.1617/s11527-010-9683-8.
- Sofi, M., van Deventer, J.S.J, Mendis, P.A., Ting, Z. and Miaoshuo, W. (2007), "Bond performance of reinforcing bars in inorganic polymer concrete (IPC)", J. Mater. Sci., 42, 3107-3116. https://doi.org/10.1007/s10853-006-0534-5.
- Sumajouw, M. and Rangan, B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns", Research Report GC 3; Curtin University of Technology.
- Sun, P. and Wu, H.C. (2013), "Chemical and freeze-thaw resistance of fly ash-based inorganic mortars", Fuel, 111, 740-745. https://doi.org/10.1016/j.fuel.2013.04.070.
- Tang, L., Xue, X.D., Bo, X., Guo, J. and Wang, P. (2020), "Contribution of emissions from cement to air quality in China", Environ. Sci., 41(11), 4776-4785. (in Chinese) https://dx.doi.org/10.13227/j.hjkx.202003171.
- Xin, L., Lv, S.Z., Wang, H.B. and Shi, J.P. (2013), "Analysis of the change of cement industry and dynamic characteristics of carbon emission in China", Environ. Sci. Technol., 36, 202-205. (in Chinese) http://dx.doi.org/10.3969/j.issn.1003-6504.2013.01.042.
- Yang, F., Dong, X.Y., Zhou, S.H. and Huang, Y.C., "Research on calculation method and application of plastic damage factor of concrete in ABAQUS", Sichuan Architecture, 37(6), 173-177. (in Chinese)
- Yang, Y. (2003), "Study on the Basic Theory and its Application of Bond-Slip between Steel Shape and Concrete in SRS Structures", Dissertation, Xi'an University of Architecture and Technology, Xi'an, China. (in Chinese)
- Yi, G.Y. (2017), "Experimental Study on Bond-Slip Behavior between Steel Shape and Concrete in Steel Reinforced Recycled Concrete Structure", Dissertation, Xi'an University of Architecture and Technology, Xi'an, China. (in Chinese)
- Zhao, R. and Sanjayan, J.G. (2011), "Geopolymer and Portland cement concretes in simulated fire", Mag. Concr. Res., 63(3), 163-173. https://doi.org/10.1680/macr.9.00110.
- Zheng, Y. (2014), "Study on bond-slip properties of Micro-expansion inorganic polymer concrete filled steel tube", Dissertation, Wuhan University of Technology, Wuhan, China. (in Chinese)