DOI QR코드

DOI QR Code

Bond performance between metakaolin-fly ash-based geopolymer concrete and steel I-section

  • Hang Sun (School of Urban Construction, Yangtze University) ;
  • Juan Chen (School of Urban Construction, Yangtze University) ;
  • Xianyue Hu (School of Urban Construction, Yangtze University)
  • Received : 2023.11.23
  • Accepted : 2024.05.22
  • Published : 2024.06.10

Abstract

The bonding efficacy of steel I-section embedded in metakaolin-fly ash-based geopolymer concrete (MK-FA-GC) was investigated in this study. Push-out tests were conducted on nine column specimens to evaluate the influence of compressive strength of concrete, embedded length of steel I-section, thickness of concrete cover, and stirrup ratio on the bond performance. Failure patterns, load-slip relationships, bond strength, and distribution of bond stress among the specimens were analyzed. The characteristic bond strength of geopolymer concrete (GC) increased with higher compressive strength, longer embedded steel section length, thicker concrete cover, and larger stirrup ratio. Empirical formulas for bond strength at the loading end were derived based on experimental data and a bond-slip constructive model for steel-reinforced MK-FA-GC was proposed. The calculated bond-slip curves showed good agreement with experimental results. Furthermore, numerical simulations using ABAQUS software were performed on column specimens by incorporating the suggested bond-slip relationship into connector elements to simulate the interface behavior between MK-FA-GC and the steel section. The simulation results showed a good correlation with the experimental findings.

Keywords

Acknowledgement

The authors are grateful to the economic funding provided by Science and Technology Bureau of Jingzhou (2023EC38), and Natural Science Foundation of Hubei Province (2023AFB804).

References

  1. Al-Azzawi, M., Yu, T. and Hadi, M.N.S. (2018), "Factors affecting the bond strength between the fly ash-based geopolymer concrete and steel reinforcement", Structures, 14, 262-272. https://doi.org/10.1016/j.istruc.2018.03.010. 
  2. Albitar, M., Visintin, P., Ali, M.M., Lavigne, O. and Gamboa, E. (2017), "Bond slip models for uncorroded and corroded steel reinforcement in class-F fly ash geopolymer concrete", J. Mater. Civil Eng., 29(1), 04016186. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001713. 
  3. Ali, S., Sheikh, M.N., Sargeant M. and Hadi, M.N.S. (2020), "Influence of polypropylene and glass fibers on alkali- activated slag/fly ash concrete", ACI. Struct. J., 117(4), 183-192. http://dx.doi.org/10.14359/51723509. 
  4. Alomayri, T., Shaikh, F.U.A. and Low I.M. (2014), "Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites", Compos. B. Eng., 60, 36-42. https://doi.org/10.1016/j.compositesb.2013.12.036. 
  5. Alzeebaree, R., Gulsan, M.E., Nis, A., Mohammedameen, A. and Cevik, A. (2018), "Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks", Steel Compos. Struct., 29(2), 201-218. https://doi.org/10.12989/scs.2018.29.2.201. 
  6. Castel, A. and Foster, S.J. (2015), "Bond strength between blended slag and class F fly ash geopolymer concrete with steel reinforcement", Cem. Concr. Res., 72, 48-53. https://doi.org/10.1016/j.cemconres.2015.02.016. 
  7. Celik, A.I. and Ozkilic, Y.O. (2023), "Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder", Steel Compos. Struct., 46(5), 689-707. https://doi.org/10.12989/scs.2023.46.5.689. 
  8. Dahou, Z., Castel, A. and Noushini, A. (2016), "Prediction of the steel-concrete bond strength from the compressive strength of Portland cement and geopolymer concretes", Constr. Build. Mater., 119, 329-342. https://doi.org/10.1016/j.conbuildmat.2016.05.002. 
  9. Davidovits, J. (1994), "Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement", J. Mater. Educ., 16, 91-139. 
  10. Davidovits, J. (2020), Geopolymer Chemistry and Applications. 5th ed., Geopolymer Institute, Saint Quentin, France.
  11. Fang, H. and Visintin, P. (2021), "Behavior of geopolymer concrete-filled circular steel tube members", Proceedings in Civ. Eng., 4, 593-597. https://doi.org/10.1002/cepa.1336. 
  12. Fernandez-Jimenez, A.M., Palomo, A. and Lopez-Hombrados, A.C. (2006), "Engineering properties of alkali-activated fly ash concrete", ACI Mater. J., 103(2), 106-112. https://doi.org/10.14359/15261. 
  13. Ganesan, N., Indira, P.V. and Santhakumar, A. (2013), "Prediction of ultimate strength of reinforced geopolymer concrete wall panels in one-way action", Constr. Build. Mater., 48, 91-97. https://doi.org/10.1016/j.conbuildmat.2013.06.090. 
  14. GB/T 288.1-2010, Metallic Materials-Tensile Testing, Ministry of Construction of P. R. of China; Beijing, 
  15. Guo, Z.H. (1997), Strength and Deformation Test Foundation and Constitutive Relationship of Concrete, Tsinghua University Press, Beijing, 
  16. Hadi, M.N.S., Farhan, N.A. and Sheikh, M.N. (2017), "Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method", Constr. Build. Mater., 140, 424-431. https://doi.org/10.1016/j.conbuildmat.2017.02.131. 
  17. Huang, J.Q., Kumar, S. and Dai, J.G. (2023), "Flexural performance of steel-reinforced geopolymer concrete one-way slabs: experimental and numerical investigations", Constr. Build. Mater., 366, 130098. https://doi.org/10.1016/j.conbuildmat.2022.130098. 
  18. Kim, J.S. and Park J. (2014), "An experimental evaluation of development length of reinforcements embedded in geopolymer concrete", Appl. Mech. Mater., 578-579, 441-444. https://doi.org/10.4028/www.scientific.net/AMM.578-579.441. 
  19. Kumar, S., Chen, B., Xu, Y. and Dai, J. (2022), "Axial-flexural behavior of FRP grid-reinforced geopolymer concrete sandwich wall panels enabled with FRP connectors", J. Build. Eng., 47, 103907. https://doi.org/10.1016/j.jobe.2021.103907. 
  20. Kumaravel, S. and Thirugnanasambandam, S. (2013), "Flexural behaviour of reinforced low calcium fly ash based geopolymer concrete beam", Global J. Res. Eng., 13, 9-13. 
  21. Kusbiantoro, A., Nuruddin, M.F., Shafiq, N. and Qazi, S.A. (2012), "The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete", Constr. Build. Mater., 36, 695-703. https://doi.org/10.1016/j.conbuildmat.2012.06.064. 
  22. Luan, C.C., Shi, X.S., Zhang, K.Y., Utashev, N. and Wang, Q. (2021), "A mix design method of fly ash geopolymer concrete based on factors analysis", Constr. Build. Mater., 272, 121612. https://doi.org/10.1016/j.conbuildmat.2020.121612. 
  23. Maranan, G., Manalo, A., Karunasena, K. and Benmokrane, B. (2015), "Bond stress-slip behavior: case of GFRP bars in geopolymer concrete", J. Mater. Civ. Eng., 27(1), 04014116. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001046. 
  24. Mehta, A. and Siddique R. (2017), "Sulfuric acid resistance of fly ash based geopolymer concrete", Constr. Build. Mater., 146, 136-143. https://doi.org/10.1016/j.conbuildmat.2017.04.077. 
  25. Nagan, S. and Mohana R. (2014), "Behaviour of geopolymer ferrocement slabs subjected to impact", IJST-T Civ. Eng., 38, 223-233. 
  26. Rajarajeswari, A. and Dhinakaran, G. (2016), "Compressive strength of GGBFS based GPC under thermal curing", Constr. Build. Mater., 126, 552-559. https://doi.org/10.1016/j.conbuildmat.2016.09.076. 
  27. Sarker, P.K. (2011), "Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete", Mater. Struct., 44, 1021-1030. https://doi.org/10.1617/s11527-010-9683-8. 
  28. Sofi, M., van Deventer, J.S.J, Mendis, P.A., Ting, Z. and Miaoshuo, W. (2007), "Bond performance of reinforcing bars in inorganic polymer concrete (IPC)", J. Mater. Sci., 42, 3107-3116. https://doi.org/10.1007/s10853-006-0534-5. 
  29. Sumajouw, M. and Rangan, B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns", Research Report GC 3; Curtin University of Technology. 
  30. Sun, P. and Wu, H.C. (2013), "Chemical and freeze-thaw resistance of fly ash-based inorganic mortars", Fuel, 111, 740-745. https://doi.org/10.1016/j.fuel.2013.04.070. 
  31. Tang, L., Xue, X.D., Bo, X., Guo, J. and Wang, P. (2020), "Contribution of emissions from cement to air quality in China", Environ. Sci., 41(11), 4776-4785. (in Chinese) https://dx.doi.org/10.13227/j.hjkx.202003171. 
  32. Xin, L., Lv, S.Z., Wang, H.B. and Shi, J.P. (2013), "Analysis of the change of cement industry and dynamic characteristics of carbon emission in China", Environ. Sci. Technol., 36, 202-205. (in Chinese) http://dx.doi.org/10.3969/j.issn.1003-6504.2013.01.042. 
  33. Yang, F., Dong, X.Y., Zhou, S.H. and Huang, Y.C., "Research on calculation method and application of plastic damage factor of concrete in ABAQUS", Sichuan Architecture, 37(6), 173-177. (in Chinese) 
  34. Yang, Y. (2003), "Study on the Basic Theory and its Application of Bond-Slip between Steel Shape and Concrete in SRS Structures", Dissertation, Xi'an University of Architecture and Technology, Xi'an, China. (in Chinese) 
  35. Yi, G.Y. (2017), "Experimental Study on Bond-Slip Behavior between Steel Shape and Concrete in Steel Reinforced Recycled Concrete Structure", Dissertation, Xi'an University of Architecture and Technology, Xi'an, China. (in Chinese) 
  36. Zhao, R. and Sanjayan, J.G. (2011), "Geopolymer and Portland cement concretes in simulated fire", Mag. Concr. Res., 63(3), 163-173. https://doi.org/10.1680/macr.9.00110. 
  37. Zheng, Y. (2014), "Study on bond-slip properties of Micro-expansion inorganic polymer concrete filled steel tube", Dissertation, Wuhan University of Technology, Wuhan, China. (in Chinese)