DOI QR코드

DOI QR Code

Discovery of novel Nodosilinea species (Cyanobacteria, Nodosilineales) isolated from terrestrial habitat in Ryukyus campus, Okinawa, Japan

  • Handung Nuryadi (Tropical Biosphere Research Center, University of the Ryukyus) ;
  • Shimpei Sumimoto (Faculty of Chemistry and Biochemistry, Kanagawa University) ;
  • Shoichiro Suda (Department of Chemistry, Biology and Marine Science,Faculty of Science, University of the Ryukyus)
  • Received : 2023.12.05
  • Accepted : 2024.06.05
  • Published : 2024.06.19

Abstract

Terrestrial cyanobacteria are extremely diverse. In urban areas, they can be found as black stains on the surface of building walls, stone monuments, or man-made structures. Many of the terrestrial cyanobacteria are still understudied. To expand knowledge of terrestrial cyanobacterial diversity, a polyphasic characterization was performed to identify 12 strains isolated from campus of University of the Ryukyus, Okinawa, Japan. Multigene phylogenetic analyses based on 16S rRNA gene and 16S-23S rRNA internal transcribed spacer (ITS) region showed that the isolated strains formed two independent subclades within Nodosilinea, and were distantly related to all described Nodosilinea species. The 16S-23S rRNA ITS secondary structures showed variations for D1-D1' and Box B domain, while V3 domain was almost identical among entire species of Nodosilinea, including the studied strains. In addition, a unique morphological character, i.e. forming nodule or spiral shape, was also observed in certain studied strains. According to polyphasic characterization, Nodosilinea coculeatus sp. nov. and Nodosilinea terrestrialis sp. nov., were proposed as two new species of terrestrial cyanobacteria from Okinawa.

Keywords

Acknowledgement

Part of this work was supported by JSPS KAKENHI Grant (#19K06090).

References

  1. Akagha, M. U., Pietrasiak, N., Bustos, D. F., Vondraskova, A., Lamb, S. C. & Johansen, J. R. 2023. Albertania and Egbenema gen. nov. from Nigeria and the United States, expanding biodiversity in the Oculatellaceae (Cyanobacteria). J. Phycol. 59:1217-1236. doi.org/10.1111/jpy.13389
  2. Berthold, D. E., Lefler, F. W. & Laughinghouse, D. H. 2022. Recognizing novel cyanobacterial diversity in marine benthic mats, with the description of Sirenicapillariaceae fam. nov., two new genera, Sirenicapillaria gen. nov. and Tigrinifilum gen. nov., and seven new species. Phycologia 61:146-165. doi.org/10.1080/00318884.2021.2006589
  3. Bohunicka, M., Pietrasiak, N., Johansen, J. R., Gomez, E. B., Hauer, T., Gaysina, L. A., et al. 2015. Roholtiella, gen. nov. (Nostocales, Cyanobacteria): a tapering and branching cyanobacteria of the family Nostocaceae. Phytotaxa 197:84-103. doi.org/10.11646/phytotaxa.197.2.2
  4. Boyer, S. L., Flechtner, V. R. & Johansen, J. R. 2001. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematic and population genetics? A case study in cyanobacteria. Mol. Biol. Evol. 18:1057-1069. doi.org/10.1093/oxfordjournals.molbev.a003877
  5. Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A. & Economou-Amilli, A. 2016. A polyphasic taxonomic approach in isolated strains of cyanobacteria from thermal springs of Greece. Mol. Phylogenet. Evol. 98:147-160. doi.org/10.1016/j.ympev.2016.02.009
  6. Brito, A., Ramos, V., Mota, R., Lima, S., Santos, A., Vieira, J., et al. 2017. Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Mol. Phylogenet. Evol. 111:18-34. doi.org/10.1016/j.ympev.2017.03.006
  7. Brocke, H. J., Piltz, B., Herz, N., Abed, R. M. M., Palinska, K. A., John, U., et al. 2018. Nitrogen fixation and diversity of benthic cyanobacterial mats on coral reefs in Curacao. Coral Reefs 37:861-874. doi.org/10.1007/s00338-018-1713-y
  8. Cai, F., Li, S., Zhang, H., Yu, G. & Li, R. 2022. Nodosilinea hunanesis sp. nov. (Prochlorotrichaceae, Synechococcales) from a freshwater pond in China based on polyphasic approach. Diversity 14:364. doi.org/10.3390/d14050364
  9. Caires, T. A., Lyra, G. M., Hentschke, G. S., da Silva, A. M. S., de Araujo, V. L., Sant'Anna, C. L., et al. 2018. Polyphasic delimitation of a filamentous marine genus, Capillus gen. nov. (Cyanobacteria, Oscillatoriaceae) with the description of two Brazilian species. Algae 33:291-304. doi.org/10.4490/algae.2018.33.11.25
  10. Casamatta, D. A., Gomez, S. R. & Johansen, J. R. 2006. Rexia erecta gen. et. sp. nov. and Capsosira lowei sp. nov, two newly described cyanobacterial taxa from the Great Smoky Mountains National Park (USA). Hydrobiology 561:13-26. doi.org/10.1007/s10750-005-1602-6
  11. Charpy, L., Casareto, B. E., Langlade, M. J. & Suzuki, Y. 2012. Cyanobacteria in coral reef ecosystems: a review. J. Mar. Biol. 2012:259571. doi.org/10.1155/2012/259571
  12. Charpy, L., Palinska, K. A., Casareto, B., Langlade, M. J., Suzuki, Y., Abed, R. M. M., et al. 2010. Dinitrogen-fixing cyanobacteria in microbial mats of two shallow coral reef ecosystems. Microb. Ecol. 59:174-186. doi.org/10.1007/s00248-009-9576-y
  13. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772. doi.org/10.1038/nmeth.2109
  14. Davydov, D., Shalygin, S. & Vilnet, A. 2020. New cyanobacterium Nodosilinea svalbardensis sp. nov. (Prochlorotrichaceae, Synechococcales) isolated from alluvium in Mimer river valley of the Svalbard archipelago. Phytotaxa 442:61-79. doi.org/10.11646/phytotaxa.442.2.2
  15. Dvorak, P., Poulickova, A., Hasler, P., Belli, M., Casamatta, D. A. & Papini, A. 2015. Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodivers. Conserv. 24:739-757. doi.org/10.1007/s10531-015-0888-6
  16. Edgar, R. C. 2004. MUSCLE: multiple alignment with high accuracy and high throughput. Nucleic Acid Res. 32:1792-1797. doi.org/10.1093/nar/gkh340
  17. Edler, D., Klein, J., Antonelli, A. & Silvestro, D. 2021. raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12:373-377. doi.org/10.1111/2041-210X.13512
  18. Gaydon, D. S., Probert, M. E., Buresh, R. J., Meinke, H. B. & Timsina, J. 2012. Modelling the role of algae in rich crop nutrition and soil organic carbon maintenance. Eur. J. Agron. 39:35-43. doi.org/10.7910/DVN/23785
  19. Gonzalez-Resendiz, L., Johansen, J. R., Leon-Tejera, H., Sanchez, L., Segal-Kischinevzky, C., Escobar-Sanchez, V., et al. 2019. A bridge too far in naming species: a total evidence approach does not support recognition of four species in Desertifilum (Cyanobacteria). J. Phycol. 55:898-911. doi.org/10.1111/jpy.12867
  20. Gugger, M., Molica, R., Le Berre, B., Dufour, P., Bernard, C. & Humbert, J.-F. 2005. Genetic diversity of Cylindrospermopsis strains (Cyanobacteria) isolated from four continents. Appl. Environ. Microbiol. 71:1097-1100. doi.org/10.1128/AEM.71.2.1097-1100.2005
  21. Guindon, S. & Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704. 10.1080/10635150390235520
  22. Heidari, F., Zima, J., Riahi, H. & Hauer, T. 2018. New simple trichal cyanobacterial taxa isolated from radioactive thermal springs. Fottea 18:137-149. doi.org/10.5507/fot.2017.024
  23. Hoffmann, L. 1989. Algae of terrestrial habitats. Bot. Rev. 55:77-105. https://doi.org/10.1007/BF02858529
  24. Hoffmann, L., Komarek, J. & Kastovsky, J. 2005. System of cyanoprokaryotes (cyanobacteria): state in 2004. Algol. Stud. 117:95-115. doi.org/10.1127/1864-1318/2005/0117-0095
  25. Iteman, I., Rippka, R., de Marsac, N. T. & Herdman, M. 2000. Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275-1286. doi.org/10.1099/00221287-146-6-1275
  26. Johansen, J. R. & Casamatta, D. A. 2005. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algol. Stud. 116:71-93. doi.org/10.1127/1864-1318/2005/0117-0071
  27. Johansen, J. R., Kovacik, L., Casamatta, D. A., Fucikova, K. & Kastovsky, J. 2011. Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92:283-302. doi.org/10.1127/0029-5035/2011/0092-0283
  28. Jusko, B. M. & Johansen, J. R. 2023. Description of six new cyanobacterial species from soil biocrusts on San Nicolas Island, California, in three genera previously restricted to Brazil. J. Phycol. 60:133-151. doi.org/10.1111/jpy.13411
  29. Kim, D.-H., Lee, N.-J., Kim, J.-H., Yang, E.-C. & Lee, O.-M. 2022. Three new Plectolyngbya species (Leptolyngbyaceae, Cyanobacteria) isolated from rocks and saltern of the Republic of Korea. Diversity 14:1013. doi.org/10.3390/d14121013
  30. Komarek, J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur. J. Phycol. 51:346-353. doi.org/10.1080/09670262.2016.1163738
  31. Komarek, J. 2018. Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia 811:7-17. doi.org/10.1007/s10750-017-3379-9
  32. Komarek, J. & Anagnostidis, K. 2005. Susswasserflora von Mitteleuropa. 19/2 Ed. Elsevier/Spektrum, Heidelberg, 759 pp.
  33. Komarek, J., Kastovsky, J., Mares, J. & Johansen, J. R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295-335.
  34. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. doi.org/10.1093/molbev/msy096
  35. Lefler, F. W., Berthold, D. E. & Laughinghouse, H. D. 2021. The occurrence of Affixifilum gen. nov. and Neolyngbya (Oscillatoriaceae) in South Florida (USA), with the description of A. floridanum sp. nov. and N. biscaynensis sp. nov. J. Phycol. 57:92-110. doi.org/10.1111/jpy.13065
  36. Lewin, R. A. 2006. Black algae. J. Appl. Phycol. 18:699-702. doi.org/10.1007/s10811-005-9018-2
  37. Mai, T., Johansen, J. R., Pietrasiak, N., Bohunicka, M. & Martin, M. P. 2018. Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 365:1-59. doi.org/10.11646/phytotaxa.365.1.1
  38. Martins, M. D. & Branco, L. H. Z. 2016. Potamolinea gen. nov. (Oscillatoriales, Cyanobacteria): a phylogenetically and ecologically coherent cyanobacterial genus. Int. J. Syst. Evol. Microbiol. 66:3632-3641. doi.org/10.1099/ijsem.0.001243
  39. Martins, M. D., Machado-de-Lima, N. M. & Branco, L. H. Z. 2019. Polyphasic approach using multilocus analyses supports the establishment of the new aerophytic cyanobacterial genus Pycnacronema (Coleofasciculaceae, Oscillatoriales). J. Phycol. 55:146-159. doi.org/10.1111/jpy.12805
  40. Miller, M. A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), Curran Associates, Inc., New Orleans, LA, pp. 1-8.
  41. Muhlsteinova, R., Hauer, T., De Ley, P. & Pietrasiak, N. 2018. Seeking the true Oscillatoria: a quest for a reliable phylogenetic and taxonomic reference point. Preslia 90:151-169. doi.org/10.23855/preslia.2018.151
  42. Muhlsteinova, R., Johansen, J. R., Pietrasiak, N., Martin, M. P., Osorio-Santos, K. & Warren, S. D. 2014. Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus. Phytotaxa 163:241-261. doi.org/10.11646/phytotaxa.163.5.1
  43. Murakami, A., Mayashita, H., Iseki, M., Adachi, K. & Mimuro, M. 2004. Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633. doi.org/10.1126/science.1095459
  44. Neilan, B. A., Jacobs, D., Del Dot, T., Blackall, L. L., Hawkins, P. R., Cox, P. T., et al. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Mycrocystis. Int. J. Syst. Bacteriol. 47:693-697. doi.org/10.1099/00207713-47-3-693
  45. Nguyen, X. H., Sumimoto, S. & Suda, S. 2017. Unexpected high diversity of terrestrial cyanobacteria from the campus of the University of the Ryukyus, Okinawa, Japan. Microorganisms 5:69. doi.org/10.3390/microorganisms5040069
  46. Nubel, U., Garcia-Pichel, F. & Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63:3327-3332. doi.org/10.1128/aem.63.8.3327-3332.1997
  47. Nuryadi, H. & Suda, S. 2022. Revealing species diversity of Neolyngbya (Cyanobacteria, Oscillatoriales) from subtropical coastal regions of Okinawa, Japan, with description of Neolyngbya intertidalis sp. nov. and Neolyngbya latusa sp. nov. Phycol. Res. 70:69-80. doi.org/10.1111/pre.12482
  48. Perkerson, R. B., Johansen, J. R., Kovacik, L., Brand, J., Kastovsky, J. & Casamatta, D. A. 2011. A unique Pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. J. Phycol. 47:1397-1412. doi.org/10.1111/j.1529-8817.2011.01077.x
  49. Pietrasiak, N., Osorio-Santos, K., Shalygin, S., Martin, M. P. & Johansen, J. R. 2019. When is a lineage a species?: a case study in Myxacorys gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. J. Phycol. 55:976-996. doi.org/10.1111/jpy.12897
  50. Radzi, R., Muangmai, N., Broady, P., Omar, W. M. W., Lavoue, S., Convey, P., et al. 2019. Nodosilinea signiensis sp. nov. (Leptolyngbyaceae, Synechococcales), a new terrestrial cyanobacterium isolated from mats collected on Signy Island, South Orkney Island, Antarctica. PLoS ONE 14:e0224395. doi.org/10.1371/journal.pone.0224395
  51. Rehakova, K., Johansen, J. R., Casamatta, D. A., Xuesong, L. & Vincent, J. 2007. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et. sp. nov. Phycologia 46:481-502. doi.org/10.2216/06-92.1
  52. Ronquist, F. & Huelsenbeck, J. P. 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinfromatics 19:1572-1574. doi.org/10.1093/bioinformatics/btg180
  53. Sciuto, K. & Moro, I. 2016. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S23S ITS region. Mol. Phylogenet. Evol. 105:15-35. doi.org/10.1016/j.ympev.2016.08.010
  54. Siegesmund, M. A., Johansen, J. R., Karsten, U. & Friedl, T. 2008. Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J. Phycol. 44:1572-1585. doi.org/10.1111/j.1529-8817.2008.00604.x
  55. Stackebrandt, E. & Ebers, J. 2006. Taxonomic parameters revisited tarnished gold standards. Microbiol. Today 33:152-155.
  56. Strunecky, O., Ivanova, A. P. & Mares, J. 2023. An update classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 59:12-51. doi.org/10.1111/jpy.13304
  57. Taton, A., Grubisic, S., Brambilla, E., De Wit, R. & Wilmotte, A. 2003. Cyanobacterial diversity in natural and artificial microbial mats of lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69:5157-5169. doi.org/10.1128/AEM.69.9.5157-5169.2003
  58. Vaz, M. G. M. V., Genuario, D. B., Andreote, A. P. D., Malone, C. F. S., Sant'Anna, C. L., Barbiero, L., et al. 2015. Pantanalinema gen. nov. and Alkalinema gen. nov.: novel pseudanabaenacean genera (Cyanobacteria) isolated from saline-alkaline lakes. Int. J. Syst. Evol. Microbiol. 65:298-308. doi.org/10.1099/ijs.0.070110-0
  59. Vazquez-Martinez, J., Gutierrez-Villagomez, J. M., Fonseca-Gracia, C., Ramirez-Chavez, E., Mondragon-Sanchez, M. L., Partida-Martinez, L., et al. 2018. Nodosilinea chupicuarensis sp. nov. (Leptolyngbyaceae, Synechococcales) a subaerial cyanobacterium isolated from a stone monument in central Mexico. Phytotaxa 334:167-182. doi.org/10.11646/phytotaxa.334.2.6
  60. Whitton, B. A. & Potts, M. 2000. The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, 669 pp.
  61. Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F. O., Ludwig, W., Schleifer, K.-H., et al. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12:635-645. doi.org/10.1038/nrmicro3330
  62. Zammit, G., Billi, D. & Albertano, P. 2012. The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. Eur. J. Phycol. 47:341-354. doi.org/10.1080/09670262.2012.717106
  63. Zucker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406-3415. doi.org/10.1093/nar/gkg595