DOI QR코드

DOI QR Code

Comparison of the Internal Pressure Behavior of Liquid Hydrogen Fuel Tanks Depending on the Liquid Hydrogen Filling Ratio

액체수소 충전 비율에 따른 액체수소 연료탱크의 내부 압력 거동 비교

  • Dongkuk Choi (Research Institute for Aerospace Engineering and Technology, Korea Aerospace University) ;
  • Sooyong Lee (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 최동국 (한국항공대학교 항공우주산업기술연구소) ;
  • 이수용 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2024.01.02
  • Accepted : 2024.04.22
  • Published : 2024.06.30

Abstract

Because hydrogen has very low density, a different storage method is required to store the same amount of energy as fossil fuel. One way to increase the density of hydrogen is through liquefaction. However, since the liquefied temperature of hydrogen is extremely low at -252 ℃, it is easily vaporized by external heat input. When liquid hydrogen is vaporized, a self-pressurizing phenomenon occurs in which the pressure inside the hydrogen tank increases, so when designing the tank, this rising pressure must be carefully predicted. Therefore, in this paper, the internal pressure of a cryogenic liquid fuel tank was predicted according to the liquid hydrogen filling ratio. A one-dimensional thermodynamic model was applied to predict the pressure rise inside the tank. The thermodynamic model considered heat transfer, vaporization of liquid hydrogen, and fuel discharging. Finally, it was confirmed that there was a significant difference in pressure behavior and maximum rise pressure depending on the filling ratio of liquid hydrogen in the fuel tank.

수소는 매우 낮은 밀도를 갖기 때문에 화석연료와 동일한 수준의 에너지량을 저장하기 위해서는 기존과 다른 저장방식이 요구된다. 수소의 밀도를 높이는 방법으로는 수소를 액화하여 저장하는 방법이 있다. 하지만, 수소의 액화온도는 -252 ℃의 극저온이기 때문에 외부 열 유입에 의해 쉽게 기화된다. 액체수소가 기화되면 탱크 내부의 압력이 증가되는 자가증압 현상을 발생하므로, 탱크 설계 시 이 상승하는 압력을 잘 예측해야 한다. 따라서, 본 논문에서는 극저온 액체수소 연료탱크의 액체수소 충전 비율에 따른 내부 압력을 예측하였다. 탱크 내부의 압력 상승을 예측하기 위하여 1차원 열역학적 모델을 적용하였다. 열전달 모델은 열 유입, 액체수소의 기화, 연료 배출에 현상이 고려되었다. 최종적으로 연료탱크 내의 액체수소의 충전 비율에 따라 압력 상승 거동과 최대 상승 압력에 큰 차이가 있음을 확인하였다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(과제번호: 2022R1A6A1A03056784)과 과학기술정보통신부의 거대과학연구개발사업인 스페이스파이오니어사업(2021M1A3B9096764)에 의해 수행되었습니다.

References

  1. H. Nojoumi, I. Dincer, and G.F. Naterer, "Greenhouse gas emissions assessment of hydrogen and kerosene-fueled aircraft propulsion," International Journal of Hydrogen Energy, vol. 34, no. 3, pp. 1363-1369, February 2009.
  2. M. Vietze, C. Mundt, and S. Weiland, "Investigation of Thermal Characteristics of Sandwich Common Bulkhead Equipped Launcher Tank," Journal of Spacecraft and Rockets, vol. 54, no. 1, pp. 67-74, January 2017.
  3. N.-K. Cho, S.-Y. Park, S.-H. Kim, and Y.-M. Han, "Liquid Hydrogen/Liquid Oxygen Rocket Engine Technology," Journal of the Korean Society of Propulsion Engineers, vol. 26, no. 2, pp. 47-59, April 2022.
  4. N. Liu, B. Ma, F. Liu, W. Huang, B. Xu, L. Qu, Y. Yang, "Progress in research on composite cryogenic propellant tank for large aerospace vehicles," Composites Part A: Applied Science and Manufacturing, vol. 143, pp. 106297, April 2021.
  5. S. Sumith and R. Ramech Kumar, "Thermo-structural analysis of cryogenic tanks with common bulkhead configuration," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 236, no. 5, pp. 900-909, June 2021.
  6. S. Nicolay, S. Karpuk, Y. Liu, and A. Elham, "Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen," International Journal of Hydrogen Energy, vol. 46, no. 64, pp. 32676-32694, September 2021.
  7. M. Prewitz, A. Bardenhagen, and R. Beck, "Hydrogen as the fuel of the future in aircrafts - Challenges and opportunities," International Journal of Hydrogen Energy, vol. 45, no. 46, pp. 25378-25385, September 2020.
  8. D. C. Bingaman, Mark K. Holly, J. L. Mace, C. Rice, R. K. Agarwal, M. K. Bradley, W. Smith, and U. Bhattarai, "A Systems Engineering Approach for the Transition to Zero Emission Aviation," AIAA AVIATION 2022 Forum, Chicago, IL, June 2022.
  9. M. Duvelleroy, L. Benquet, S. Schaffrath, and M.-A. Delestrade, "Airbus reveals new zero-emission concept aircraft," Airbus, https://www.airbus.com/en/newsroom/press-releases/2020-09-airbus-reveals-new-zero-emission-concept-aircraft, September 2020.
  10. B. Khandelwal, A. Karakurt, P. R. Sekaran, V. Sethi, and R. Singh, "Hydrogen powered aircraft : The future of air transport," Progress in Aerospace Sciences, vol. 60, pp. 45-59, July 2013.
  11. P. Sharma, T. Bera, K. Semwal, R. M. Badhe, A. Sharma, S.S.V. Ramakumar, and S. Neogi, "Theoretical analysis of design of filament wound type 3 composite cylinder for the storage of compressed hydrogen gas," International Journal of Hydrogen Energy, vol. 45, no. 46, pp. 25386-25397, September 2020.
  12. G. Romeo, F. Borello, G. Correa, and E. Cestino, "ENFICA-FC: Design of transport aircraft powered by fuel cell & flight test of zero emission 2-seater aircraft powered by fuel cells fueled by hydrogen," International Journal of Hydrogen Energy, vol. 38, no. 1, pp. 469-479, January 2013.
  13. Q. Zhang, H. Xu, X. Jia, L. Zu, S. Cheng, and H. Wang, "Design of a 70 MPa type IV hydrogen storage vessel using accurate modeling techniques for dome thickness prediction," Composite Structures, vol. 236, pp. 111915, Marchy 2020.
  14. M. Nebe, A. Soriano, C. Braun, P. Middendorf, and F. Walther, "Analysis on the mechanical response of composite pressure vessels during internal pressure loading: FE modeling and experimental correlation," Composites Part B: Engineering, vol. 212, pp. 108550, Mayy 2021.
  15. J. Joseph, G. Agrawal, D. K. Agarwal, J.C. Pisharady, and S. Sunil Kumar, "Effect of insulation thickness on pressure evolution and thermal stratification in a cryogenic tank," Applied Thermal Engineering, vol. 111, pp. 1629-1639, January 2017.
  16. K.. Kim, D. Shin, Y. Kim, and S. Karng, "Adiabatic Performance of Layered Insulating Materials for Bulk LH2 Storage Tanks," The Korean Hydrogen and New Energy Society, vol. 27, no. 6, pp. 642-650, December 2016.
  17. N. Darkow, A. Fischer, H. Scheufler, H. Hellmann, and J. Serstmann, "Concept Development of a Cryogenic Tank Insulation for Reusable Launch Vehicle," 8th European Conference for Aeronautics and Space Sciences, Madrid, Spain, July 2019.
  18. T. Reimer, C. Rauh, G. D. Di Martino, and M. Sippel, "Thermal Investigation of a Purged Insulation System for a Reusable Cryogenic Tank," Journal of Spacecraft and Rockets, vol. 59, no. 4, pp. 1205-1213, July 2022.
  19. H.R. Wang, B. Wang, Q.W. Pan, Y.Z. Wu, L. Jiang, Z.H. Wang, and Z.H. Gan, "Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks," International Journal of Hydrogen Energy, vol. 47, no. 71, pp. 30530-30545, August 2022.
  20. J. Zheng, L. Chen, J. Wang, Y. Zhou, and J. Wang, "Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank," Energy Conversion and Management, vol. 184, pp. 74-82, March 2019.
  21. J. Fu, B. Sunden, X. Chen, and Y. Huang, "Influence of phase change on self-pressurization in cryogenic tanks under microgravity," Applied Thermal Engineering, vol. 87, pp. 225-233, August 2015.
  22. Z. Liu, L. Wang, Y. Jin, and Y. Li, "Development of thermal stratification in a rotating cryogenic liquid hydrogen tank," International Journal of Hydrogen Energy, vol. 40, no. 43, pp. 15067-15077, November 2015.
  23. N. de Miguel, B. Acosta, P. Moretto, and R. O. Cebolla, "The effect of defueling rate on the temperature evolution of on-board hydrogen tanks," International Journal of Hydrogen Energy, vol. 40, no. 42, pp. 14768-14774, November 2015.
  24. Spectronik Pte. Ltd, "PROTIUM-300 Fuel Cell System User Guide Version 5.0," https://www.spectronik.com/protium-300, August 2022.