과제정보
본 연구는 산업통상자원부, 한국산업기술진흥원의 월드클래스플러스사업(P0017165)과 한국에너지기술연구원 주요사업(C4-2446-02)을 통해 수행되었습니다.
참고문헌
- Archambo, M. and Kawatra, S. K., "Red mud Fundamentals and New Avenues for Utilization," Miner. Process. Extr. Metall., 42(7), 427-450 (2021). https://doi.org/10.1080/08827508.2020.1781109
- CaO, J. L., Yan, Z. L., Deng, Q. F., Wang, Y., Yuan, Z. Y., Sun, G., Jia, T. K., Wang, D. X., Bala, H., and Zhang, Z. Y., "Mesoporous Modified-Red-Mud Supported Ni Catalysts for Ammonia Decomposition to Hydrogen," Int. J. Hydrogen Energy, 39(11), 5747-5755 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.169
- Sushil, S. and Batra, V. S., "Catalytic Application of Red Mud, an Aluminium Industry Waste: A Review," Appl. Catal. B: Environ., 81(1-2), 64-77 (2008). https://doi.org/10.1016/j.apcatb.2007.12.002
- Wang, S., Ang, H. M., and Tade, M. O., "Novel Application of Red Mud as Coagulant, Adsorbent and Catalyst for Environmentally Benign Process," Chemosphere, 72(11), 1621-1635 (2008). https://doi.org/10.1016/j.chemosphere.2008.05.013
- Alvarez, J., Ordonez, S., Rosal, R., Satre, H., and Diez, F. V., "A New Method for Enhancing the Performance of Red Mud as a Hydrogenation," Appl. Catal. A: Gen., 80(1-2), 399-409 (1999).
- Ordonez, S., Satre, H., and Diez F. V., "Characterisation and Deactivation Studies of Sulfided Red Mud used as Catalyst for the Hydrodechlorination of Tetrachloroethylene," Appl. Catal. B: Environ., 29(4), 263-273 (2001). https://doi.org/10.1016/S0926-3373(00)00207-1
- Ordonez, S., Satre, H., and Diez F. V., "Hydrodechlorination of Tetrachloroethylene over Modified Red Mud: Deactivation Studies and Kinetics," Appl. Catal. B: Environ., 34(3), 213-226 (2001). https://doi.org/10.1016/S0926-3373(01)00217-X
- Wu, J., Gong, Z., Lu, C., Niu S., Ding, K., Xu, L., and Zhang, K., "Preparation and Performance of Modified Red Mud-Based Catalysts for Selective Catalytic Reduction of NOx with NH3," Catalysts, 8(1), 35 (2018).
- Sushil, S. and Batra, V. S., "Modification of Red Mud by Acid Treatment and its Application for CO Removal," J. Hazard. Mater., 203-204, 264-273 (2012). https://doi.org/10.1016/j.jhazmat.2011.12.007
- Paredes, J. R., Ordonez, S., Vega, A., and Diez, F. V., "Catalytic Combustion of Methane over Red Mud-Based Catalysts," Appl. Catal. B: Environ., 47(1), 37-45 (2004). https://doi.org/10.1016/S0926-3373(03)00325-4
- Paramguru, R. K., Rath, P. C., and Misra, V. N., "Trends in Red Mud Utilization-A Review," Mineral Processing & Extractive Metall. Rev., 26(1), 1-29 (2004). https://doi.org/10.1080/08827500490477603
- Sutar, H., Mishra, S. C., Sahoo, S. K., and Maharana, H. S., "Progress of Red Mud Utilization: An Overview," Am. Chem. Sci. J., 4(3), 255-279 (2014). https://doi.org/10.9734/ACSJ/2014/7258
- Ma, Z., Hua, W., Tang, Y., and Gao, Z., "Catalytic Decomposition of CFC-12 over Solid Acids WO3/MXOY (M=Ti, Sn, Fe)," J. Mol. Catal. A: Chem., 159(2), 335-345 (2000). https://doi.org/10.1016/S1381-1169(00)00191-6
- Chen, C. K., Shiue, A., Huang, D. W., and Chang, C. T., "Catalytic Decomposition of CF4 over Iron Promoted Mesoporous Catalysts," J. Nanosci. Nanotechnol., 14(4), 3202-3208 (2014). https://doi.org/10.1166/jnn.2014.8581
- Swamidoss, C. M., Sheraz, M., Anus, A., Jeong, S., Park, Y. K., Kim, Y. M., and Kim, S., "Effect of Mg/Al2O3 and Calcination Temperature on the Catalytic Decomposition of HFC-134a," Catalysts, 9(3), 270 (2019).
- Sheraz, M., Anus, A., Le, V. C. T., Swamidoss, C. M. A., and Kim, S., "The Effect of Catalyst Calcination Temperature on Catalytic Decomposition of HFC-134a over γ-Al2O3," Catalysts, 11(9), 1021 (2021).
- Karmakar, S. and Greene, H. L., "An Investigation of CFC12 (CCl2F2) Decomposition on TiO2 Catalyst," J. Catal., 151(2), 394-406 (1995). https://doi.org/10.1006/jcat.1995.1042
- Kwak, I. H., Lee, E. H., Kim, J. B., Nam, S. C., and Ryi, S. K., "Hydrolysis of HFC-134a using a Red Mud Catalyst to Reuse an Industrial Waste," J. Ind. Eng. Chem., (2024).
- Lee, E. H., Kim, T. W., Byun, S., Seo, D. W., Hwang, H. J., Baek, J., Jeong, E. S., Kim, H., and Ryi, S. K., "A Study on γ-Al2O3 Catalyst for N2O Decomposition," Clean Technol., 29(2), 126-134 (2023).
- Wu, C. S. and Liu, D. Y., "Mineral Phase and Physical Properties of Red Mud Calcined at Different Temperatures," J. Nanomater., 2012, 6 (2012).
- Yoon, J. K., Im, Y. S., and Shin, M., "A Numerical Study on Optimum Ventilation Conditions for the Task of Exchange Catalyst," J. Korean So. Occup. Environ. Hyg., 28(2), 190-199 (2018).
- Huh, B., Park, H. K., and Lee, C. H., "A Study on the Remanufacturing of the Waste Three-way Catalysts," Clean Technol., 15(3), 147-153 (2009).
- Salavati, H., Tangestaninejad, S., Moghadam, M., Mirkhani, V., and Mohammadpoor-Baltork, I., "Zirconia-Supported Keggin Phosphomolybdovanadate Nanocomposite: A Heterogeneous and Reusable Catalyst for Alkene Epoxidation under Thermal and Ultrasonic Irradiation Conditions," Comptes Rendus. Chimie, 14(6), 588-596 (2011). https://doi.org/10.1016/j.crci.2011.03.003
- Han, T. U., Yoo, B. S., Kim, Y. M., Hwang, B. A., Sudibya, G. L., Park, Y. K., and Kim, S. D., "Catalytic Conversion of 1,1,1,2-Tetrafluoroethane (HFC-134a)," Korean J. Chem. Eng., 35(8), 1611-1619 (2018). https://doi.org/10.1007/s11814-018-0051-7
- Kim, M. J., Kim, Y., Youn, J. R., Choi, I. H., Hwang, K. R., Kim, S. G., Park, Y. K., Moon, S. H., Lee, K. B., and Jeon, S. G., "Effects of Sulfuric Acid Treatment on the Performance of Ga-Al2O3 for the Hydrolytic Decomposition of 1,1,1,2-Tetrafluoroethane (HFC-134a)," Catalysts, 10(7), 766 (2020).
- Jeong, S., Sudibya, G. L., Jeon, J. K., Kim, Y. M., Swamidoss, C. M. A., and Kim, S., "The Use of a γ-Al2O3 and MgO Mixture in the Catalytic Conversion of 1,1,1,2-Tetrafluoroethane (HFC-134a)," Catalysts, 9(11), 901 (2019).
- Zhang, W., Zhou, X., Sun, H., Li, Z., Wang, K., Zang, P., Han, W., Li, W., Li, Y., and Tang, H., "Catalytic Performance of Alumina Catalysts with Diffferent Surface Properties for the Dehydrofluorination of HFC-134a (1,1,1,2-Tetrafluoroethance)," Chem. Phys. Lett., 836, 141027 (2024).
- Liu, W. N., Chang, J., Zhu, Y. Q., and Zhang, M., "Effect of Tricalcium Aluminate on the Properties of Tricalcium Silicate-Tricalcium Aluminate Mixtures: Setting Time, Mechanical strength and Biocompatibility," Int. Endod. J., 44(1), 41-50 (2011). https://doi.org/10.1111/j.1365-2591.2010.01793.x
- Kashiwaya, Y., Toishi, K., Kaneki, Y., and Yamakoshi, Y., "Catalytic Effect of Slags on the Formation of Bio-diesel Fuel," ISIJ Int., 47(12), 1829-1831 (2007). https://doi.org/10.2355/isijinternational.47.1829
- Wang, B., Li, S., Tian, S., Feng, R., and Meng, Y., "A New Solid Base Catalyst for the Transesterification of Rapeseed Oil to Biodiesel with Methanol," Fuel, 104, 698-703 (2013). https://doi.org/10.1016/j.fuel.2012.08.034
- Kang, J. K. and Musgrave, C. B., "The Mechanism of HF/H2O Chemical Etching of SiO2," J. Chem. Phys., 116(1), 275-280 (2002). https://doi.org/10.1063/1.1420729