DOI QR코드

DOI QR Code

청정 수소 저장을 위한 고효율, 저탄소 배출 암모니아 합성기술 동향

Advancements in High-Efficiency Ammonia Synthesis Technology: A Key Solution for Green Hydrogen Storage in the Carbon-Neutral Era

  • 정원준 (인하대학교 화학공학과) ;
  • 김진태 (인하대학교 화학공학과) ;
  • 조강희 (인하대학교 화학공학과)
  • Weonjun Jeong (Department of Chemistry and Chemical Engineering) ;
  • Jintae Kim (Department of Chemistry and Chemical Engineering) ;
  • Kanghee Cho (Department of Chemistry and Chemical Engineering)
  • 투고 : 2024.03.05
  • 심사 : 2024.04.03
  • 발행 : 2024.06.30

초록

최근, 무탄소 에너지원(특히, 선박 및 혼소 발전), 고효율 청정 수소 저장 및 매개체로써 암모니아가 다시 각광받고 있다. 암모니아는 화학공학에서 매우 중요한 공정 중 하나인 Haber-Bosch 공정을 통해 합성할 수 있지만, 이 공정은 에너지 소비량이 높고 탄소 배출량 역시 높아, 기존 공정을 통해 암모니아를 합성할 시 탄소 저감 효과가 미미하다. 이러한 기존 공정의 치명적인 단점을 해결하기 위해 최근, 높은 에너지 효율로 탄소 배출이 적게 암모니아를 합성할 수 있는 열화학적 합성 방법이 많이 개발되고 있다. 소재측면에서는 기존 공정보다 완화된 공정 조건에서도 충분히 높은 암모니아 합성 성능을 보일 수 있는 고성능 촉매 소재를 개발하는 연구가 진행되고 있으며, 공정측면에서는 매체 순환식(chemical-looping) 합성 방법, 플라즈마 합성방법, 기계화학적 합성 방식 등 다양하게 적용되고 있다. 이번 총설에서는 최근 청정수소 저장을 효과적으로 저장하기 위해 어떤 암모니아 합성 기술들이 개발되고 있는지 자세히 소개하고자 한다.

Recently, the establishment of a hydrogen-based economy and the utilization of low-carbon energy sources, particularly for shipping and power generation, have been in high demand in order to achieve carbon neutrality by 2050. In particular, ammonia is gaining renewed attention because it is capable of serving as a key facilitator for high-efficiency green hydrogen storage and transportation and it is also capable of serving as a low-carbon energy source. Although ammonia can be synthesized through the Haber-Bosch process, the high energy consumption and carbon emissions associated with this process result in minimal carbon reduction. To address the critical drawbacks of the traditional Haber-Bosch process, various thermochemical synthesis methods have been developed recently, allowing for the synthesis of ammonia with lower carbon emissions and a higher energy efficiency. Research is also progressing in the development of high-performance catalyst materials that are capable of demonstrating sufficient ammonia synthesis performance under milder process conditions compared to conventional methods. Additionally, a variety of different processes such as chemical-looping ammonia synthesis, plasma synthesis, and mechanochemical synthesis are being applied diversely. This review aims to provide a detailed overview of the emerging ammonia synthesis technologies that have been developed to effectively store green hydrogen for future applications.

키워드

과제정보

This work was also supported by INHA UNIVERSITY Research Grant.

참고문헌

  1. Bouckaert, S., Pales, A., McGlade, C., Wanner, B., Varro, L., D'Ambrosio, D., and Spencer, T., "Net Zero by 2050 : A Roadmap for the Global Energy Sector," NASEM (2021).
  2. https://www.mofa.go.kr/www/brd/m_4080/view.do?seq=371966 (accessed Dec. 2021).
  3. http://www.me.go.kr/home/web/board/read.do?boardMasterId=1&boardId=1533570&menuId=10525 (accessed Jun. 2022).
  4. Hydrogen Economy Activation Roadmap, Ministry of Trade, Industry and Energy Document (Released on January 17, 2019).
  5. Promotion of Overseas Clean Hydrogen Introduction Before 2030, Ministry of Trade, Industry and Energy Press Release (Released on June 23, 2020).
  6. Abe, J. O., Popoola, A. P. I., Ajenifuja, E., and Popoola, O. M., "Hydrogen Energy Economy and Storage: Review and Recommendation," Int. J. Hydrogen Energy, 44, 11901-11919 (2019).
  7. Hopstad, A. L. H., Argyriadis, K., Manjock, A., Goldsmith, J., and Ronold, K. O., "DNV GL Standard for Floating Wind Turbines," J. Offshore Mech. Arct. Eng., 51975, V001T01A020 (2018).
  8. https://www.chosun.com/economy/industrycompany/2023/10/16/CPTKPWPI7FH43IC5HULQVY6NBM/ (accessed Oct 2023).
  9. Schuler, T., Kimura, T., Schmidt, T. J., and Buchi, F. N., "Towards a Generic Understanding of Oxygen Evolution Reaction Kinetics in Polymer Electrolyte Water Electrolysis," Energy Environ. Sci., 13, 331-344 (2020).
  10. Wolf, P., Klingler, M., Schmidt, M., and Kurze, M., "Ammonia-Fed Fuel Cells for a Locally CO2-Free Energy Supply in the Telecommunications Industry-A Comparative Techno-Economic Analysis," Renew. Sustain. Energy Rev., 13, 2153-2166 (2020).
  11. Liu, H., "Ammonia Synthesis Catalysts: Innovation and Practice," World Scientific (2013).
  12. Choi, J. H., Lee, S. C., Lee, J., Kim, G. M., and Lim, D. H., "Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith using Response Surface Methodology," Clean Technol., 28, 218-226 (2022).
  13. Kitano, M., Inoue, Y., Sasase, M., Kishida, K., Kobayashi, Y., Nishiyama, K., Tada, T., Kawamura, S., Yokoyama, T., Hara, M., and Hosono, H., "Self-Organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis," J. Energy Chem., 57, 2648-2652 (2018).
  14. Sato, K., Miyahara, S.-I., Ogura, Y., Tsujimaru, K., Wada, Y., Toriyoma, T., Yamamoto, T., Matsumura, S., and Nagaoka, K., "Surface Dynamics for Creating Highly Active Ru Sites for Ammonia Synthesis: Accumulation of a Low-Crystalline Oxygen-Deficient Nanofraction," ACS Sustain. Chem. Eng., 8, 2726-2734 (2020).
  15. Luz, I., Parvathikar, S., Capenter, M., Bellamy, T., Amato, K., Carpenter, J., and Lail, M., "MOF-Derived Nanostructured Catalysts for Low-Temperature Ammonia Synthesis," Catal. Sci. Technol., 10, 105 (2020).
  16. Carreira, E. M., "Journal of the American Chemical Society: A Look Back at 2022 and Forward to 2023," J. Am. Chem. Soc., 145, 1364-11374 (2023).
  17. Jacobsen, C. J., Dahl, S., Clausen, B. S., Bahn, S., Loadottir, A., and Norskov, J. K., "Catalyst Design by Interpolation in the Periodic Table: Bimetallic Ammonia Synthesis Catalysts," J. Am. Chem. Soc., 123, 8404-8405 (2001).
  18. Hattori, M., Iijima, S., Nakao, T., Hosono, H., and Hara, M., "Solid Solution for Catalytic Ammonia Synthesis from Nitrogen and Hydrogen Gases at 50 ℃," Nat. Commun., 11, 2001 (2020).
  19. Ye, T.-N., Park, S.-W., Lu, Y., Li, J., Sasase, M., Kitano, M., Tada, T., and Hosono, H., "Vacancy-Enabled N2 Activation for Ammonia Synthesis on an Ni-Loaded Catalyst," Nature, 583, 391-395 (2020).
  20. Hara, M., Kitano, M., and Hosono, H., "Ru-Loaded C12A7: e- Electride as a Catalyst for Ammonia Synthesis," ACS Catal., 7, 2313-2324 (2017).
  21. Wang, P., Chang, F., Gao, W., Cuo, J., Wu, G., He, T., and Chen, P., "Breaking Scaling Relations to Achieve Low-Temperature Ammonia Synthesis through LiH-Mediated Nitrogen Transfer and Hydrogenation," Nat. Chem., 9, 64-70 (2017).
  22. Humphreys, J., Lan, R., and Tao, S., "Development and Recent Progress on Ammonia Synthesis Catalysts for Haber-Bosch Process," Adv. Energy Sustainability Res., 2, 2000043 (2021).
  23. Liu, H., Ammonia Synthesis Catalysts Innovation and Practice, 1st ed, World Scientific Publishing Co. Pte. Ltd. And Chemical Industry Press, Singapore and Beijing, 21-30 (2013).
  24. Boudart, M. and Khammoum, S. B., "Ammonia Synthesis on Supported Iron Catalyst," Abstr. Pap. Am. Chem. Soc., 164, 15 (1972).
  25. Anokhin, V. N., Menshov, V. N., and Zuev, A. A., "Kinetics of Ammonia-Synthesis," J. Appl. Chem., 3, 48 (1975).
  26. Weiss, W. and Ranke, W., "Surface Chemistry and Catalysis on Well-Defined Epitaxial Iron-Oxide Layers," Prog. Surf. Sci., 1, 70 (2002).
  27. Schwertmann, U. and Cornell, R. M., Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed, Vch Publishers, NY, USA, 136-137 (1991).
  28. Almquist, J. A. and Crittenden, E. D., "A Study of Pure-Iron and Promoted-Iron Catalysts for Ammonia Synthesis," Ind. Eng. Chem., 18, 1307-1309 (1926).
  29. Spencer, N. D., Schoonmaker, R. C., and Somorjai, G. A., "Iron Single Crystals as Ammonia Synthesis Catalysts: Effect of Surface Structure on Catalyst Activity," J. Catal., 74, 129-135 (1982).
  30. Spencer, N. D., Schoonmaker, R. C., and Somorjai, G. A., "Iron Single Crystals as Ammonia Synrhesis Catalyst: Effect of Surface Structure on Catalyst Activity," J. Catal., 74, 129-135 (1982).
  31. Aika, K.-I. and Ozaki, A., "Kinetics and Isotope Effect of Ammonia Synthesis over a Singly-Promoted Iron Catalyst," J. Catal., 19, 350-352 (1970).
  32. Baranski, A., Bielanski, A., and Pattek, A., "Kinetics of Reduction of Iron Catalysts for Ammonia Synthesis," J. Catal., 26, 286-294 (1972).
  33. Honkala, K., Hellman, A., Remediakis, I. N., Logadottir, A., Carlsson, A., Dahl, S., Christensen, C. H., and Norskov, J. K., "Ammonia Synthesis from First-Principles Calculations," Science, 307, 555-558 (2005).
  34. Saadatjou, N., Jafari, A., and Sahebdelfar, S., "Ruthenium Nanocatalysts for Ammonia Synthesis: A Review," Chem. Eng. Commun., 202, 420-448 (2015).
  35. Wang, Z. Q., Ma, Y. C., and Lin, J. X., "Ruthenium Catalyst Supported on High-Surface-Area Basic ZrO2 for Ammonia Synthesis," J. Mol. Catal. A: Chem., 378, 307-313 (2013).
  36. Narasimharao, K., Seetharamulu, P., Rao, K. R., and Basahel, S. N., "Carbon Covered Mg-Al Hydrotalcite Supported Nanosized Ru Catalysts for Ammonia Synthesis," J. Mol. Catal. A: Chem., 411, 157-166 (2016).
  37. Baik, Y., Kwen, M., Lee, K., Chi, S., Lee, S., Cho, K., Kim, H., and Choi, M., "Splitting of Hydrogen Atoms into Proton-Electron Pairs at BaO-Ru Interfaces for Promoting Ammonia Synthesis under Mild Conditions," J. Am. Chem. Soc., 145, 11364-11374 (2023).
  38. Lin, B., Liu, Y., Heng, L., Wang, X., Ni, J., Lin, J., and Jiang, L., "Morphology Effect of Ceria on the Catalytic Performances of Ru/CeO2 Catalysts for Ammonia Synthesis," Ind. & Eng. Chem. Res., 57, 9127-9135 (2018).
  39. Wang, X., Peng, X., Zhang, Y., Ni, J., Au, C. T., and Jiang, L., "Efficient Ammonia Synthesis over a Core-Shell Ru/CeO2 Catalyst with a Tunable CeO2 Size: DFT Calculations and XAS Spectroscopy Studies," Inorg. Chem. Front., 6, 396-406 (2019).
  40. Wang, X., Peng, X., Ran, H., Lin, B., Ni, J., Lin, J., and Jiang, L., "Influence of Ru Substitution on the Properties of LaCoO3 Catalysts for Ammonia Synthesis: XAFS and XPS Studies," Ind. & Eng. Chem. Res., 57, 17375-17383 (2018).
  41. Kobayashi, Y., Tang, Y., Kageyama, T., Yamashita, H., Masuda, N., Hosokawa, S., and Kageyama, H., "Titanium-Based Hydrides as Heterogeneous Catalysts for Ammonia Synthesis," J. Am. Chem. Soc., 139, 18240-18246 (2017).
  42. Hattori, M., Mori, T., Arai, T., Inoue, Y., Sasase, M., Tada, T., Kitano, M., Yokoyama, T., Hara, M., and Hosono, H., "Enhanced Catalytic Ammonia Synthesis with Transformed BaO," ACS Catal., 8, 10977-10984 (2018).
  43. Kitano, M., Inoue, Y., Sasase, M., Kishida, K., Kobayashi, Y., Nishiyama, K., Tada, T., Kawamura, S., Yokoyama, T., Hara, M., and Hosono, H., "Self-Organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis," Angew. Chem., Int. Ed., 57, 2648-2652 (2018).
  44. Lin, B., Guo, Y., Cao, C., Ni, J., Lin, J., and Jiang, L., "Carbon Support Surface Effects in the Catalytic Performance of Ba-Promoted Ru Catalyst for Ammonia Synthesis," Catal. Today, 316, 230-236 (2018).
  45. Inoue, Y., Kitano, M., Kim, S. W., Yokoyama, T., Hara, M., and Hosono, H., "Highly Dispersed Ru on Electride [Ca24Al28O64] 4+(e-)4 as a Catalyst for Ammonia Synthesis," ACS Catal., 4, 674-680 (2014).
  46. Kitano, M., Kanbara, S., Inoue, Y., Kuganathan, N., Sushko, P. V., Yokoyama, T., Hara, M., and Hosono, H., "Electride Support Boosts Nitrogen Dissociation over Ruthenium Catalyst and Shifts the Bottleneck in Ammonia Synthesis," Nat. Commun., 6, 6731 (2015).
  47. Kitano, M., Inoue, Y., Ishikawa, H., Yamagata, K., Nakao, T., Tada, T., Matsuishi, S., Yokoyama, T., Hara, M., and Hosono, H., "Essential Role of Hydride Ion in Ruthenium-Based Ammonia Synthesis Catalysts," Chem. Sci., 7, 4036-4043 (2016).
  48. Inoue, Y., Kitano, M., Kishida, K., Abe, H., Niwa, Y., Sasase, M., Fujita, Y., Ishikawa, H., Yokoyama, T., Hara, M., and Hosono, H., "Efficient and Stable Ammonia Synthesis by Self-Organized Flat Ru Nanoparticles on Calcium Amide," ACS Catal., 6, 7577-7584 (2016).
  49. Lu, Y., Li, J., Tada, T., Toda, Y., Ueda, S., Yokoyama, T., Kitano, M., and Hosono, H., "Water Durable Electride Y5Si3: Electronic Structure and Catalytic Activity for Ammonia Synthesis," J. Am. Chem. Soc., 138, 3970-3973 (2016).
  50. Wu, J., Gong, Y., Inoshita, T., Fredrickson, D. C., Wang, J., Lu, Y., Kitano, M., and Hosono, H., "Tiered Electron Anions in Multiple Voids of LaScSi and their Applications to Ammonia Synthesis," Adv. Mater., 29, 1700924 (2017).
  51. Li, J., Wu, J., Wang, H., Lu, Y., Ye, T., Sasase, M., Wu, X., Kitano, M., Inoshita, T., and Hosono, H., "Acid-Durable Electride with Layered Ruthenium for Ammonia Synthesis: Boosting the Activity via Selective Etching," Chem. Sci., 10, 5712-5718 (2019).
  52. Wu, J., Li, J., Gong, Y., Kitano, M., Inoshita, T., and Hosono, H., "Intermetallic Electride Catalyst as a Platform for Ammonia Synthesis," Angew. Chem., Int. Ed., 58, 825-829 (2019).
  53. Hagen, S., Barfod, R., Fehrmann, R., Jacobsen, C. J., Teunissen, H. T., Stahl, K., and Chorkendorff, I., "New Efficient Catalyst for Ammonia Synthesis: Barium-Promoted Cobalt on Carbon," Chem. Commun., 11, 1206-1207 (2002).
  54. Rarog-Pilecka, W., Miskiewicz, E., Matyszek, M., Kaszkur, Z., Kepinski, L., and Kowalczyk, Z., "Carbon-Supported Cobalt Catalyst for Ammonia Synthesis: Effect of Preparation Procedure," J. Catal., 237, 207-210 (2006).
  55. Rarog-Pilecka, W., Miskiewicz, E., Kepinski, L., Kaszkur, Z., Kielar, K., and Kowalczyk, Z., "Ammonia Synthesis over Barium-Promoted Cobalt Catalysts Supported on Graphitised Carbon," J. Catal., 249, 24-33 (2007).
  56. Rarog-Pilecka, W., Miskiewicz, E., and Kowalczyk, Z., "Activated Carbon as a Template for Creating Catalyst Precursors. Unsupported Cobalt Catalyst for Ammonia Synthesis," Catal. Commun., 9, 870-873 (2008).
  57. Rarog-Pilecka, W., Karolewska, M., Truszkiewicz, E., Iwanek, E., and Mierzwa, B., "Cobalt Catalyst Doped with Cerium and Barium Obtained by Co-Precipitation Method for Ammonia Synthesis Process," Catal. Lett., 141, 678-684 (2011).
  58. Woo, R., Lee, K., Ahn, B.-S., Kim, S. H., Ju, H., Kim, J. H., Shim, J., Beum, H.-T., Cho, K., Bae, Y.-S., and Yoon, H. C., "BaCeO3 Perovskite-Incorporated Co Catalyst for Efficient NH3 Synthesis under Mild Conditions," Chem. Eng. J., 475, 146354 (2023).
  59. Karolewska, M., Truszkiewicz, E., Wsciset, M., Mierzwa, B., Kepinski, L., and Rarog-Pilecka, W., "Ammonia Synthesis over a Ba and Ce-Promoted Carbon-Supported Cobalt Catalyst. Effect of the Cerium Addition and Preparation Procedure," J. Catal., 303, 130-134 (2013).
  60. Lin, B., Qi, Y., Wei, K., and Lin, J., "Effect of Pretreatment on Ceria-Supported Cobalt Catalyst for Ammonia Synthesis," RSC Adv., 4, 38093-38102 (2014).
  61. Gao, W., Guo, J., Wang, P., Wang, Q., Chang, F., Pei, Q., Zhang, W., Liu, L., and Chen, P., "Production of Ammonia via a Chemical Looping Process Based on Metal Imides as Nitrogen Carriers," Nat. Energy, 3, 1067-1075 (2018).
  62. Humphreys, J., Lan, R., Du, D., Xu, W., and Tao, S., "Promotion Effect of Proton-Conducting Oxide BaZr0.1Ce0.7Y0.2O3-d on the Catalytic Activity of Ni Towards Ammonia Synthesis from Hydrogen and Nitrogen," Int. J. Hydrogen Energy, 43, 17726-17736 (2018).
  63. Kojima, R. and Aika, K.-I., "Cobalt Molybdenum Bimetallic Nitride Catalysts for Ammonia Synthesis: Part 2. Kinetic Study," Appl. Catal. A, 218, 121-128 (2001).
  64. Bion, N., Can, F., Cook, J., Hargreaves, J. S. J., Hector, A. L., Levason, W., McFarlane, A. R., Richard, M., and Sardar, K., "The Role of Preparation Route upon the Ambient Pressure Ammonia Synthesis Activity of Ni2Mo3N," Appl. Catal. A, 504, 44-50 (2015).
  65. Liu, H., Ammonia Synthesis Catalysts Innovation and Practice, 1st ed, World scientific publishing co. and Chemical industry press, Singapore and Beijing, 871 (2013).
  66. Liu, H., "Ammonia Synthesis Catalyst 100 Years: Practice, Enlightenment and Challenge," Chin. J. Catal., 35, 1619-1640 (2014).
  67. Jennings, J. R., Catalytic Ammonia Synthesis: Fundamentals and Practice, 1st ed, Plenum Press, NY, USA (1991).
  68. Gao, W., Guo, J., Wang, P., Wang, Q., Chang, F., Pei, Q., Zhang, W., Liu, L., and Chen, P., "Production of Ammonia via a Chemical Looping Process Based on Metal Imides as Nitrogen Carriers," Nat. Energy, 3, 1067-1075 (2018).
  69. Zhou, L., Li, X., Li, Q., Kalu, A., Liu, C., Liu, X., and Li, W., "Advances in Nitrogen Carriers for Chemical Lopping Processes for Sustainable and Carbon-Free Ammonia Synthesis," ACS Catal., 13, 15087-15106 (2023).
  70. Brown, S. and Hu, J., "Review of Chemical Looping Ammonia Synthesis Materials," Chem. Eng. J., 280, 119063 (2023).
  71. Abanades, S., Rebiere, B., Drobek, M., and Julbe, A., "Experimental Screening of Metal Nitrides Hydrolysis for Green Ammonia Synthesis via Solar Thermochemical Looping," Chem. Eng. J., 283, 119406 (2024)
  72. Daisley, A. and Hargreaves, J. S. J., "Metal Nitrides, the Marsvan Krevelen Mechanism and Heterogeneously Catalysed Ammonia Synthesis," Catal. Today, 423, 113874 (2023).
  73. Wang, R., Gao, W., Feng, S., Guan, Y., Wang, Q., Guo, J., and Chen, P., "Zn Promotes Chemical Looping Ammonia Synthesis Mediated by LiH-Li2NH Couple," ChemSusChem, 16, e202300813 (2023).
  74. Fu, E., Gong, F., Wang, S., and Xiao, R., "Chemical Looping Technology in Mild-Condition Ammonia Production: A Comprehensive Review and Analysis," Small, 20, 2305095 (2024).
  75. Segal, N. and Sebba, F., "Ammonia Synthesis Catalyzed by Uranium Nitride: The Reaction Mechanism," J. Catal., 8, 105-112 (1967).
  76. Jacobsen, C. J. H., Dahl, S., Clausen, B. S., Bahn, S., Logadottir, A., and Norskov, J. K., "Catalyst Design by Interpolation in the Periodic Table: Bimetallic Ammonia Synthesis Catalysts," J. Am. Chem. Soc., 123, 8404-8405 (2001).
  77. Jacobsen, C. J. H., "Novel Class of Ammonia Synthesis Catalysts," Chem. Commun., 12, 1057-1058 (2000).
  78. Kojima, R. and Aika, K.-I., "Cobalt Molybdenum Bimetallic Nitride Catalysts for Ammonia Synthesis: Part 1. Preparation and Characterization," Appl. Catal. A, 215, 149-160 (2001).
  79. Kojima, R. and Aika, K.-I., "Cobalt Molybdenum Bimetallic Nitride Catalysts for Ammonia Synthesis: Part 3. Reactant Gas Treatment," Appl. Catal. A, 219, 157-170 (2001).
  80. Mckay, D., Hargreaves, J. S. J., Rico, J. L., Rivera, J. L., and Sun, X. L., "The Influence of Phase and Morphology of Molybdenum Nitrides on Ammonia Synthesis Activity and Reduction Characteristics," J. Solid State Chem., 181, 325-333 (2008).
  81. Cao, H., Guo, J., Chang, F., Pistidda, C., Zhou, W., Zhang, X., Santoru, A., Wu, H., Schell, N., Niewa, R., and Chen, P., "Transition and Alkali Metal Complex Ternary Amides for Ammonia Synthesis and Decomposition," Chem. Eur. J., 23, 9766-9771 (2017).
  82. Ye, T. N., Park, S. W., Lu, Y., Li, J., Sasase, M., Kitano, M., and Hosono, H., "Contribution of Nitrogen Vacancies to Ammonia Synthesis over Metal Nitride Catalysts," J. Am. Chem. Soc., 142, 14374-14383 (2020).
  83. Smith, P. J., Taylor, D. W., Dowden, D. A., Kemball, C., and Taylor, D., "Ammonia Synthesis and Related Reactions over Iron-Cobalt and Iron-Nickel Alloy Catalysts: Part II. Catalysts Reduced above 853 K," Appl. Catal., 3, 303-314 (1982).
  84. Al Sobhi, S., Bion, N., Hargreaves, J. S., Hector, A. L., Laassiri, S., Levason, W., Lodge, A. W., McFarlane, A. R., and Ritter, C., "The Reactivity of Lattice Nitrogen within the Ni2Mo3N and NiCoMo3N Phases," Mater. Res. Bull., 118, 110519 (2019).
  85. Al Sobhi, S., Hargreaves, J. S., Hector, A. L., and Laassiri, S., "Citrate-Gel Preparation and Ammonia Synthesis Activity of Compounds in the Quaternary (Ni,M)2Mo3N (M = Cu or Fe) Systems," Dalton Trans., 48, 16786-16792 (2019).
  86. Hong, J., Prawer, S., and Murphy, A. B., "Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress," ACS Sustainable Chem. Eng., 6, 15-31 (2018).
  87. Kogelschatz, U., Eliasson, B., and Egli, W., "Dielectric-Barrier Discharges. Principle and Applications," J. Phys. IV France, 7(C4), 47-66 (1997).
  88. Eliasson, B. and Kogelschatz, U., "Modeling and Applications of Silent Discharge Plasmas," IEEE Trans. Plasma Sci., 19, 309-323 (1991).
  89. Gordiets, B., Ferreira, C. M., Pinheiro, M. J., and Ricard, A., "Self-Consistent Kinetic Model of Low-Pressure-Flowing Discharges: II. Surface Processes and Densities of N, H, NH3 Species," Plasma Sources Sci. Technol., 7, 363-378 (1998).
  90. Hong, J., Pancheshnyi, S., Tam, E., Lowke, J., Prawer, S., and Murphy, A. B., "Kinetic Modelling of NH3 Production in N2-H2 Non-Equilibrium Atmospheric-Pressure Plasma Catalysis," J. Phys. D: Appl. Phys., 50, 154005 (2017).
  91. Kitano, M., Inoue, Y., Yamazaki, Y., Hayashi, F., Kanbara, S., Matsuishi, S., Yokoyama, T., Kim, S. W., Hara, M., and Hosono, H., "Ammonia Synthesis using a Stable Electride as an Electron Donor and Reversible Hydrogen Store," Nat. Chem., 4, 934-940 (2012).
  92. Rao, C. N. R. and Rao, G. R., "Nature of Nitrogen Adsorbed on Transition-Metal Surfaces as Revealed by Electron-Spectroscopy and Cognate Techniques," Surf. Sci. Rep., 13, 223-263 (1991).
  93. Wang, L., Zhao, Y., Liu, C., Gong, W., and Guo, H., "Plasma Driven Ammonia Decomposition on a Fe-catalyst: Eliminating Surface Nitrogen Poisoning," Chem. Commun., 49, 3787-3789 (2013).
  94. Neyts, E. C., Ostrikov, K., Sunkara, M. K., and Bogaerts, A., "Plasma Catalysis: Synergistic Effects at the Nanoscale," Chem. Rev., 115, 13408-13446 (2015).
  95. Ertl, G., "Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture)," Angew. Chem., Int. Ed., 47, 3524-3535 (2008).
  96. Carrasco, E., Jimenez-Redondo, M., Tanarro, I., and Herrero, V. J., "Neutral and Ion Chemistry in Low Pressure dc Plasmas of H2/N2 Mixtures: Routes for the Efficient Production of NH3 and NH4+," Phys. Chem. Chem. Phys., 13, 19561-19572 (2011).
  97. Nakajima, J. and Sekiguchi, H., "Synthesis of Ammonia using Microwave Discharge at Atmospheric Pressure," Thin Solid Films, 516, 4446-4451 (2008).
  98. Peerenboom, K. S. C., van Dijk, J., Goedheer, W. J., and Kroesen, G. M. W., "Effects of Magnetization on an Expanding High-Enthalpy Plasma Jet in Argon," Plasma Sources Sci. Technol., 22, 025010 (2013).
  99. van Helden, J. H., Zijlmans, R., Engeln, R., and Schram, D. C., "Molecule Formation in N and O Containing Plasmas," IEEE Trans. Plasma Sci., 33, 390-391 (2005).
  100. van Helden, J. H., Wagemans, W., Yagci, G., Zijlmans, R. A. B., Schram, D. C., Engeln, R., Lombardi, G., Stancu, G. D., and Ropcke, J., "Detailed Study of the Plasma-Activated Catalytic Generation of Ammonia in N2-H2 Plasmas," J. Appl. Phys., 101, 043305 (2007).
  101. Uyama, H. and Matsumoto, O., "Synthesis of Ammonia in High-Frequency Discharges," Plasma Chem. Plasma Process., 9, 13-24 (1989).
  102. Uyama, H. and Matsumoto, O., "Synthesis of Ammonia in High-Frequency Discharges. II. Synthesis of Ammonia in a Microwave Discharge under Various Conditions," Plasma Chem. Plasma Process., 9, 421-432 (1989).
  103. Whitehead, J. C., "Plasma-Catalysis: The Known Knowns, the Known Unknowns and the Unknown Unknowns," J. Phys. D: Appl. Phys., 49, 243001 (2016).
  104. Harling, A. M., Demidyuk, V., Fischer, S. J., and Whitehead, J. C., "Plasma-Catalysis Destruction of Aromatics for Environmental Clean-Up: Effect of Temperature and Configuration," Appl. Catal. B, 82, 180-189 (2008).
  105. Bai, M. D., Bai, X. Y., Zhang, Z. T., and Bai, M. D., "Synthesis of Ammonia in a Strong Electric Field Discharge at Ambient Pressure," Plasma Chem. Plasma Process., 20, 511-520 (2000).
  106. Bai, M. D., Zhang, Z. T., Bai, X. Y., Bai, M. D., and Ning, W., "Plasma Synthesis of Ammonia with a Microgap Dielectric Barrier Discharge at Ambient Pressure," IEEE Trans. Plasma Sci., 31, 1285-1291 (2003).
  107. https://nh3fuelassociation.org/wp-content/uploads/2012/05/huberty_2008.pdf (accessed November 2017).
  108. Horvath, G., Mason, N. J., Polachova, L., Zahoran, M., Moravsky, L., and Matejcik, S., "Packed Bed DBD Discharge Experiments in Admixtures of N2 and CH4," Plasma Chem. Plasma Process., 30, 565-577 (2010).
  109. Bai, M. D., Zhang, Z. T., Bai, M. D., Bai, X. Y., and Gao, H. H., "Synthesis of Ammonia using CH4/N2 Plasmas Based on Micro-Gap Discharge under Environmentally Friendly Condition," Plasma Chem. Plasma Process., 28, 405-414 (2008).
  110. Akay, G. and Zhang, K., "Process Intensification in Ammonia Synthesis using Novel Coassembled Supported Microporous Catalysts Promoted by Nonthermal Plasma," Ind. Eng. Chem. Res., 56, 457-468 (2017).
  111. Kim, H. H., Teramoto, Y., Ogata, A., Takagi, H., and Nanba, T., "Plasma Catalysis for Environmental Treatment and Energy Applications," Plasma Chem. Plasma Process., 36, 45-72 (2016).
  112. https://www.zdplaskin.laplace.univtlse.fr/ (accessed November 2017).
  113. Kogelschatz, U., "Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications," Plasma Chem. Plasma Process., 23, 1-46 (2003).
  114. Yamabe, C., Ihara, S., and Ishimine, M., "Fundamental-Studies of Ozone Generation and its Characteristics using New-Type of Ozonizer," Jpn. J. Appl. Phys., 33, 4361-4364 (1994).
  115. Zhang, J. A., Su, D. S., Blume, R., Schlogl, R., Wang, R., Yang, X. G., and Gajovic, A., "Surface Chemistry and Catalytic Reactivity of a Nanodiamond in the Steam-Free Dehydrogenation of Ethylbenzene," Angew. Chem., Int. Ed., 49, 8640-8644 (2010).
  116. Hong, J. M., Aramesh, M., Shimoni, O., Seo, D. H., Yick, S., Greig, A., Charles, C., Prawer, S., and Murphy, A. B., "Plasma Catalytic Synthesis of Ammonia using Functionalized-Carbon Coatings in an Atmospheric-Pressure Non-Equilibrium Discharge," Plasma Chem. Plasma Process., 36, 917-940 (2016).
  117. Rodriguez, M. M., Bill, E., Brennessel, W., and Holland, P., "N2 Reduction and Hydrogenation to Ammonia by a Molecular Iron-Potassium Complex," Science, 334(6057), 780-783 (2011).
  118. Gong, Y., Wu, J., Kinato, M., Wang, J., Ye, T.-N., Li, J., Kobayashi, Y., Kishida, K., Abe, H., Niwa, Y., Yang, H., Tada, T., and Hosono, H., "Ternary Intermetallic LaCoSi as a Catalyst for N2 Activation," Nat. Catal., 1, 178-185 (2018).
  119. Foster, S. L., Bakovic, S. P., Duda, R., Maheshwari, S., Milton, R., Minteer, S., Janik, M., Renner, J., and Greenlee, L., "Catalysts for Nitrogen Reduction to Ammonia," Nat. Catal., 1, 490-500 (2018).
  120. Han, G.-F., Li, F., Chen, Z.-W., Coppex, C., Kim, S.-J., Noh, H.-J., Fu, Z., Lu, Y., Singh, C. V., Siahrostami, S., Jiamg, Q., and Baek, J.-B., "Mechanochemistry for Ammonia Synthesis under Mild Condition," Nat. Nanotechnol., 16, 325-330 (2021).
  121. Ye, T.-N., Park, S.-W., Lu, Y., Sasase, M., Kinato, M., Tada, T., and Hosono, H., "Vacancy-Enabled N2 Activation for Ammonia Synthesis on an Ni-Loaded Catalyst," Nature, 583, 391-395 (2020).
  122. Li, J., Xiong, Q., Mu, X., and Li, L., "Recent Advances in Ammonia Synthesis: From Haber-Bosch Process to External Field Driven Strategies," ChemSusChem., e202301775 (2024).
  123. Wang, M., Khan, M. A., Mohsin, I., Wicks, J., Ip, A. H., Sumon, K. Z., Dinh, C.-T., Sargent, E. H., Gates, I. D., and Kibria, M. G., "Can Sustainable Ammonia Synthesis Pathways Compete with Fossil-Fuel Based Haber-Bosch Processes?," Energy Environ. Sci., 14, 2535-2548 (2021).