DOI QR코드

DOI QR Code

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed

도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가

  • Yoonkyung Park (Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Chang Hyuk Ahn (Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology)
  • 박윤경 (한국건설기술연구원 환경연구본부) ;
  • 안창혁 (한국건설기술연구원 환경연구본부)
  • Received : 2024.02.28
  • Accepted : 2024.05.09
  • Published : 2024.05.30

Abstract

This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비 지원(주요사업)사업으로 수행되었습니다(과제번호 20240125-001, 탄소중립을 위한 차세대 환경기술 연구).

References

  1. Adhikari, B. K., Barrington, S., Martinez, J., and King, S. (2009). Effectiveness of three bulking agents for food waste composting, Waste Management, 29(1), 197-203. https://doi.org/10.1016/j.wasman.2008.04.001 
  2. Ahn, H. K., Richard, T. L., and Glanville, T. D. (2008). Laboratory determination of compost physical parameters for modeling of airflow characteristics, Waste Management, 28(3), 660-670. https://doi.org/10.1016/j.wasman.2007.04.008 
  3. Al-Ghouti, M. A., Khan, M., Nasser, M. S., Al-Saad, K., and Heng, O. E. (2021). Recent advances and applications of municipal solid wastes bottom and fly ashes: Insights into sustainable management and conservation of resources, Environmental Technology & Innovation, 21, 101267. https://doi.org/10.1016/j.eti.2020.101267 
  4. Bora, K. (2022). Spatial patterns of fertilizer use and imbalances: Evidence from rice cultivation in India, Environmental Challenges, 7, 100452. https://doi.org/10.1016/j.envc.2022.100452 
  5. Chen, Y., Day, S. D., Wick, A. F., and McGuire, K. J. (2014). Influence of urban land development and subsequent soil rehabilitation on soil aggregates, carbon, and hydraulic conductivity, Science of The Total Environment, 329-336. https://doi.org/10.1016/j.scitotenv.2014.06.099 
  6. Dantroliya, S., Joshi, C., Mohapatra, Shah, Bhargava, P., Bhanushali, S., Pandit, R., Joshi, C., and Joshi, M. (2022). Creating wealth from waste: An approach for converting organic waste in to value-added products using microbial consortia, Environmental Technology & Innovation, 25, 102092. https://doi.org/10.1016/j.eti.2021.102092 
  7. Deeb, M., Groffman, P. M., Blouin, M., Egendorf, S. P., Vergnes, A., Vasenev, V., Cao, D. L., Walsh, D., Morin, T., and Sere, G. (2020). Using constructed soils for green infrastructure-challenges and limitations, Soil, 6, 413-434. https://doi.org/10.5194/soil-6-413-2020 
  8. Geyer, R., Jambeck, J. R., and Law, K. L. (2017). Production, use, and fate of all plastics ever made, Science Advances, 3(7), e1700872. https://doi.org/10.1126/sciadv.1700782 
  9. Jacobs, C., Soulliere, K., Sawyer-Beaulieu, S., Sabzwari, A., and Tam, E. (2022). Challenges to the circular economy: Recovering wastes from simple versus complex products, Sustainability, 14, 2576. https://doi.org/10.3390/su14052576 
  10. Kim, J., Choi, S., and Joo, J. (2017). EPA SWMM-LID modeling for low impact development, Journal of Korean Society of Hazard Mitigation, 17(2), 415-424. [Korean Literature] https://doi.org/10.9798/KOSHAM.2017.17.2.415 
  11. Leimgruber, J., Krebs, G., Camhy, D., and Muschalla, D. (2018). Sensitivity of model-based water balance to low impact development parameters, Water, 10, 1838. https://doi.org/10.3390/w10121838 
  12. Logsdon, S. D. and Sauer, P. A. (2016). Nutrient leaching when compost is part of plant growth media, Compost Science & Utilization, 24, 238-245. https://doi.org/10.1080/1065657X.2016.1147398 
  13. Nam, G., Kim, M. S., and Ahn, J. W. (2017). Analyses for current research status for the coffee by-product and for status of coffee wastes in Seoul, Journal of Energy Engineering, 26(4), 14-22. [Korean Literature] https://doi.org/10.5855/ENERGY.2017.26.4.014 
  14. Nourbakhsh, F., Afyuni, M., and Abbaspour, K. C. (2005). Research note: Estimation of field capacity and wilting Point from basic soil physical and chemical properties, Arid Land Research and Management, 1(1), 81-85. https://doi.org/10.1080/15324980590887353 
  15. Paramisparam, P., Ahmed, O. H., Omar, L., Ch'ng, H. Y., Johan, P. D., and Hamidi, N. H. (2021). Co-application of charcoal and wood ash to improve potassium availability in tropical mineral acid soils, Agronomy, 11(10), 2081. https://doi.org/10.3390/agronomy11102081 
  16. Paritosh, K., Yadav, M., Mathur, S., Balan, V., Liao, W., Pareek, N., and Vivekanand, V. (2018). Organic fraction of municipal solid waste: overview of treatment methodologies to enhance anaerobic biodegradability, Frontiers in Energy Research, 6, 75. https://doi.org/10.3389/fenrg.2018.00075 
  17. Park, Y., Jang, S. H., and Kim, S. (2016). Optimum installation of permeable pavement using multi-objective optimization technique, Journal of the Korean Society of Hazard Mitigation, 16(4), 313-321. [Korean Literature] https://doi.org/10.9798/KOSHAM.2016.16.4.313 
  18. Pour, F. H. and Makkawi, Y. T. (2021). A review of post-consumption food waste management and its potentials for biofuel production, Energy Reports, 7, 7759-7784. https://doi.org/10.1016/j.egyr.2021.10.119 
  19. Rosal, A., Chica, A. F., Arcos, M. A., and Dios, M. (2012). Use of organic acids in the composting of municipal solid waste: a pilot-scale study, Environmental Technology, 33, 2149-2158. https://doi.org/10.1080/09593330.2012.660653 
  20. Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor, Geoderma, 156, 75-83. https://doi.org/10.1016/j.geoderma.2010.02.003 
  21. Sanchez, O. J., Ospina, D. A., and Montoya, S. (2017). Compost supplementation with nutrients and microorganisms in composting process, Waste Management, 69, 136-153. https://doi.org/10.1016/j.wasman.2017.08.012 
  22. Sarkar, A. (2022). Minimalonomics: A novel economic model to address environmental sustainability and earth's carrying capacity, Journal of Cleaner Production, 371, 133663. https://doi.org/10.1016/j.jclepro.2022.133663 
  23. Savabi, M. R., Shinde, D., Konomi, K., Nkedi-Kizza, P., and Jayachandran, K. (2005). Modeling the effect of soil amendments (composts) on water balance and water quality, Journal of Environmental Hydrology, 13, 1-14. 
  24. Schaffartzik, A., Mayer, A., Gingrich, S., Eisenmenger, N., Loy, C., and Krausmann, F. (2014). The global metabolic transition: Regional patterns and trends of global material flows, 1950-2010, Global Environmental Change, 26, 87-97. https://doi.org/10.1016/j.gloenvcha.2014.03.013 
  25. Slorach, P. C., Jeswani, H. K., Cuellar-Franca, R., and Azapagic, A. (2019). Environmental and economic implications of recovering resources from food waste in a circular economy, Science of The Total Environment, 693, 133516. https://doi.org/10.1016/j.scitotenv.2019.07.322 
  26. Tchonkouang, R. D., Tchonkouang, H., and Miri, T. (2023). From waste to plate: Exploring the impact of food waste valorisation on achieving zero hunger, Sustainability, 15(13), 10571. https://doi.org/10.3390/su151310571 
  27. United Stated Environmental Protection Agency (U. S. EPA.). (2015). Storm water management model user's manual Version 5.1 - manual, U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-14/413 (NTISEPA/600/R-14/413b). 
  28. Voberkova, S., Maxianova, A., Schlosserova, N., Adamcova, D., Vrsanska, M., Richtera, L., Gagic, M., Zloch, J., and Vaverkova, M. D. (2020). Food waste composting-is it really so simple as stated in scientific literature?-a case study, The Science of the Total Environment, 723, 138202. https://doi.org/10.1016/j.scitotenv.2020.138202 
  29. Xu, Q., Jia, Z., Tang, S., and Luo, W. (2022). The effect of flow partition on storm runoff and pollutant retention through raingardens with and without subsurface drainage, Journal of Environmental Management, 302(Pt A), 114038. https://doi.org/10.1016/j.jenvman.2021.114038 
  30. Zhang, L., Xu, M., Chen, H., Li, Y., and Chen, S. (2022). Globalization, green economy and environmental challenges: state of the art review for practical implications, Frontiers in Environmental Science, 10, 870271.