DOI QR코드

DOI QR Code

Elemental Composition of the Soils using LIBS Laser Induced Breakdown Spectroscopy

  • Muhammad Aslam Khoso (Institute of Physics, University of Sindh) ;
  • Seher Saleem (Institute of Physics, University of Sindh) ;
  • Altaf H. Nizamani (Institute of Physics, University of Sindh) ;
  • Hussain Saleem (Department of Computer Science, UBIT, University of Karachi) ;
  • Abdul Majid Soomro (Institute of Physics, University of Sindh) ;
  • Waseem Ahmed Bhutto (Institute of Physics, University of Sindh) ;
  • Saifullah Jamali (Institute of Physics, University of Sindh) ;
  • Nek Muhammad Shaikh (Institute of Physics, University of Sindh)
  • Received : 2024.06.05
  • Published : 2024.06.30

Abstract

Laser induced breakdown spectroscopy (LIBS) technique has been used for the elemental composition of the soils. In this technique, a high energy laser pulse is focused on a sample to produce plasma. From the spectroscopic analysis of such plasma plume, we have determined the different elements present in the soil. This technique is effective and rapid for the qualitative and quantitative analysis of all type of samples. In this work a Q-switched Nd: YAG laser operating with its fundamental mode (1064 nm laser wavelength), 5 nanosecond pulse width, and 10 Hz repetition rate was focused on soil samples using 10 cm quartz lens. The emission spectra of soil consist of Iron (Fe), Calcium (Ca), Titanium (Ti), Silicon (Si), Aluminum (Al), Magnesium (Mg), Manganese (Mn), Potassium (K), Nickel (Ni), Chromium (Cr), Copper (Cu), Mercury (Hg), Barium (Ba), Vanadium (V), Lead (Pb), Nitrogen (N), Scandium (Sc), Hydrogen (H), Strontium (Sr), and Lithium (Li) with different finger-prints of the transition lines. The maximum intensity of the transition lines was observed close to the surface of the sample and it was decreased along the axial direction of the plasma expansion due to the thermalization and the recombination process. We have also determined the plasma parameters such as electron temperature and the electron number density of the plasma using Boltzmann's plot method as well as the Stark broadening of the transition lines respectively. The electron temperature is estimated at 14611 °K, whereas the electron number density i.e. 4.1 × 1016 cm-3 lies close to the surface.

Keywords

References

  1. A. H. Nizamani, B. Rasool, M. Tahir, N. M. Shaikh, H. Saleem, (2013), "Adiabatic ION Shuttling Protocols in Outer-Segmented-Electrode Surface ION Traps," International Journal of Scientific & Engineering Research (IJSER), 4(6), 3055-3061.
  2. A. H. Nizamani, M. A. Rind, N. M. Shaikh, A. H. Moghal, H. Saleem, (2013), "Versatile Ultra High Vacuum System for ION Trap Experiments: Design and Implementation," Intl. Journal of Advancements in Research & Technology, USA, 2(5).
  3. A. H. Nizamani, S. A. Buzdar, B. Rasool, N. M. Shaikh, H. Saleem, (2013), "Computer-based Frequency Drift Control of Multiple LASERs in Real-Time," International Journal of Scientific & Engineering Research (IJSER), 4(6), 3038.
  4. A. M. Soomro, W. A. Bhutto, A. H. Nizamani, H. Saleem, M. Y. Soomro, M. A. Khaskheli, N. M. Shaikh, (2019), "Controllable Growth of Hexagonal BN Monolayer Sheets on Cu Foil by LPCVD," IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 6.
  5. A. Safi, B. Campanella, E. Grifoni, S. Legnaioli, G. Lorenzetti, S. Pagnotta, F. Poggialini, L. Ripoll-Seguer, M. Hidalgo, V. Palleschi, (2018), "Multivariate Calibration in Laser-Induced Breakdown Spectroscopy Quantitative Analysis: The Dangers of a 'Black Box' Approach and How to Avoid Them, Spectrochimica Acta Part B: Atomic Spectroscopy Volume 144, (46-54)
  6. D. A. Cremers and L. J. Radzimski, (2006), "Handbook of Laser-Induced Breakdown Spectroscopy", Wiley, Chichester.
  7. E. Tognoni, V. Palleschi, M. Corsi and G. Cristoforetti, (2002), "Quantitative Micro-Analysis by Laser-Induced Breakdown Spectroscopy: A Review of the Experimental Approaches," Spectrochimica Acta Part B: Atomic Spectroscopy 57(7), 1115-1130.
  8. G Cristoforetti, S Legnaioli, V Palleschi, A Salvetti, E Tognoni, P A Benedetti, F Brioschi, and F Ferrario, (2006), "Quantitative Analysis of Aluminium Alloys by Low-Energy, High-Repetition Rate Laser-Induced Breakdown Spectroscopy," Journal of Analytical Atomic Spectrometry 21, no. 7, 697-702.
  9. G. Murtaza, Nek M Shaikh, G. A. Kandhro, M. Ashraf, (2019), "Laser Induced Breakdown Optical Emission Spectroscopic Study of Silicon Plasma" Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223 (117374).
  10. H. Cao, J. Y. Wu, H. C. Ong, J. Y. Dai and R. P. H. Chang, (1998), "Second Harmonic Generation in Laser Ablated Zinc Oxide Thin Films", Appl Phys Lett 73(5):572-574.
  11. H. R. Griem, (1997), "Principles of Plasma Spectroscopy", Cambridge Univ. Press, Cambridge.
  12. H. Saleem & et al., (2012), "Review of Various Aspects of Radio Frequency IDentification (RFID) Technology," International Organization for Scientific Research - Journal of Computer Engineering (IOSR-JCE), vol. 8, no. 1.
  13. H. Saleem & et al., (2019), "Imposing Software Traceability and Configuration Management for Change Tolerance in Software Production," IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 1.
  14. H. Saleem, A. H. Nizamani, W. A. Bhutto, A. M. Soomro, M. Y. Soomro, A. Toufik, (2019), "Two Dimensional Natural Convection Heat Losses from Square Solar Cavity Receiver," IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 4.
  15. J. B. Simeonsson and A. W. Miziolek, (1994), "Spectroscopic Studies of Laser-Produced Plasma Formed in CO and CO2 using 193, 266, 355, 532 and 1064 nm Laser Radiation," Appl. Phy. B 59, 1-9.
  16. J. Bublitz, C. Dolle, W. Schade, A. Hartmann and R. Horn, (2001), "Laser-Induced Breakdown Spectroscopy for Soil Diagnostics," European Journal of Soil Science 52, 305-312.
  17. J. C. G. Sande, C. N. Afonso, J. L. Escudero, R. Serna, F. Catalina, and E. Bernabeu, (1992), "Optical Properties of Laser-Deposited a-Ge Films: A Comparison with Sputtered and e-Beam-Deposited Films", J.Appl. Opt. 31, 6133-6138.
  18. J. Kaiser, M. Galiova, K. Novotny, L. Reale, K. Stejska, O. Samek, R. Malina, K. Palenikova, V. Adam and R. Kizek, (2007), "Utilization of the Laser Induced Plasma Spectroscopy for Monitoring of The Metal Accumulation in Plant Tissues with High Spatial Resolution", Mod. Res. Educat. Top. Microsc. 1, 434-441.
  19. J. P. Singh, and S. N. Thakur, (2007), "Laser-Induced Breakdown Spectroscopy", Elsevier, Amsterdam, Netherland.
  20. K. J. Saji, N. V. Joshy and M. K. Jayaraj, (2006), "Optical Emission Spectroscopic Studies on Laser Ablated Zinc Oxide Plasma," Jour. of Appl. Phys. 100:043302 (5).
  21. Konjevic, N., Lesage, A., Fuhr, J. R., & Wiese, W. L., (2002), "Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms (A Critical Review of Selected Data for the Period 1989 through 2000)", Journal of Physical and Chemical Reference Data, 31(3), 819-927.
  22. M. Akhtar, A. Jabbar, N. Ahmed, S. Mahmood, Z. A. Umar, R. Ahmed and M. A. Baig, (2019), "Analysis of Lead and Copper in Soil Samples by Laser-Induced Breakdown Spectroscopy under External Magnetic Field", Applied Phy B. 25:110.
  23. M. Ashraf, Nek M Shaikh, G. A. Kandhro, G. Murtaza J. Iqbal, A. Iqbal, S. Ali Lashari, (2020), "Energy Penetrated and Inverse Bremsstrahlung Absorption Coefficient in Laser Ablated Germanium Plasma," Journal of Molecular Structure, 1203 (127412).
  24. M. F. Bustamante, C. A. Rinaldi and J. C. Ferrero, (2002), "Laser-Induced Breakdown Spectroscopy Characterization of Ca in Soil Depth Profile", Spectr Acta Part B 57, 303-309.
  25. M. Hassan, M. Abdel Hamied, A. H. Hanafy, R. Fantoni and M. A. Harith, (2011), "Laser Monitoring of Phyto Extraction Enhancement of Lead Contaminated Soil Adopting EDTA and EDDS", AIP Conf. Proc. 1380, 93-100.
  26. M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni and M. A. Harith, (2008), "Studying the Enhanced Phyto Remediation of Lead Contaminated Soils via Laser Induced Breakdown Spectroscopy", Spectr. Acta Part B 63, 1225-1229.
  27. M. S. Gomes, D. S. Junior, L. C. Nunes, G. G. A. Carvalho, F. O. Leme and F. J. Krug, (2011), "Evaluation of Grinding Methods for Pellets Preparation Aiming at the Analysis of Plant Materials by Laser Induced Breakdown Spectrometry", Talanta 85, 1744-1750.
  28. M. Y. Channa, A. H. Nizamani, A. M. Soomro, H. Saleem, W. A. Bhutto, M. Y. Soomro, M. A. Khaskheli, N. M. Shaikh, (2019), "Vertical Ion Shuttling Protocols for Multi-Strip Surface Ion Traps," IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 7.
  29. M. Y. Channa, A. H. Nizamani, H. Saleem, W. A. Bhutto, A. M. Soomro, and M. Y. Soomro, (2019), "Surface Ion Trap Designs for Vertical Ion Shuttling," IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 4.
  30. Mohammed A. Hameed, Ahmed S. A. Al-Ali, Omar A. Ali and Ndher I. Mohammed, (2019) "Determination of the Fertility of Southern Iraqi Soil using Laser-Induced Breakdown Spectroscopy System" Journal of Physics: Conf. Series 1279 (012060).
  31. N. Ahmed, R. Ahmed, M. Rafiqe and M. A. Baig, (2016), "A Comparative Study of Cu-Ni Alloy using LIBS, LA-TOF, EDX and XRF", Laser and Particle Beam, 16: 0263-0346.
  32. N. M. Shaikh, A. H. Nizamani, A. H. Moghal, M. A. Rind. (2013). "Spectroscopic Studies of Copper Plasma Produced by Laser Ablation", Sindh Univ. Jour. (Sci. Ser.) Vol.45 (2) Page 399-404.
  33. N. M. Shaikh, B. Rashid, S. Hafeez, Y. Jamil and M. A. Baig, (2006), "Measurement of Electron Density and Temperature of a Laser-Induced Zinc Plasma", Jour. of Phys., Applied Phys. 39 (7), 1384.
  34. N. M. Shaikh, S. Hafeez, B. Rashid and M. A. Baig, (2007), "Spectroscopic Studies of Laser Aluminum Plasma using Fundamental, Second and Third Harmonics of a Nd: YAG Laser", The Eur. Phys. Jour. 44 (2), 371-379.
  35. N. M. Shiakh, S. Hafeez and M. A. Baig, (2007)," Plasma Properties of Laser-Ablated Strontium Target", Jour. of Applied Phys. 103 (8), 083117.
  36. P. D. Martin, D. F. Malley, G. Manning and L. Fuller, (2002), "Determination of Soil Organic Carbon and Nitrogen at the Field Level using Near-Infrared Spectroscopy", Can. J. soil. sci. 82, 413-422.
  37. R. Chand, Saeeduddin, M. A. Khaskheli, A. M. Soomro, H. Saleem, W. A. Bhutto, A. H. Nizamani, M.Y. Soomro, N. M. Shaikh, S. V. Muniandy, (2019), "Fractal Analysis of Light Scattering Data from Gravity-Driven Granular Flows," IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 7.
  38. R. Noll, (2012), "Laser-Induced Breakdown Spectroscopy", In Laser-Induced Breakdown Spectroscopy, pp. 7-15. Springer-Verlag, Berlin Heidelberg.
  39. S. A. Buzdar, M. A. Khan, A. Nazir, M. A. Gadhi, A. H. Nizamani, H. Saleem, (2013), Effect of Change in Orientation of Enhanced Dynamic Wedges on Radiotherapy Treatment Dose. IJoART, 2, 496-500.
  40. S. C. Jantzi and J. R. Almirall, (2011), "Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS)", Anal Bioanal Chem 400, 3341-3351.
  41. S. Jamali, W. A. Bhutto, A. H. Nizamani, H. Saleem, M. A. Khaskheli, A. M. Soomro, A. G. Sahito, N. M. Shaikh and S. Saleem, (2019), "Spectroscopic Analysis of Lithium Fluoride (LiF) using Laser Ablation", IJCSNS, 19. 8: 127 - 134.
  42. S. Yamada, S. Oguri. A. Morimoto, T. Shimizu, T. Minamikawa, and Y. Yonezawa, (2000), "Preparation of Epitaxial Ge Film on Si by Pulsed Laser Ablation using Molten Droplets", Jpn. J. Appl. Phys. 39, 278.
  43. T. Hussain, M. A. Gondal, Z. H. Yamani and M. A. Baig, (2007), "Measurement of Nutrients in Green House Soil with Laser Induced Breakdown Spectroscopy", Environ Monit Assess 124, 131-139.
  44. V. K. Unnikrishan, K. Alti, V. B. KArtha, C. Santhosh, G. P. Gupta and B. M. Suri, (2010), "Measurements of Plasma Temperature and Electron Density in Laser-Induced Copper Plasma by Time-Resolved Spectroscopy of Neutral Atom and Ion Emissions", Pramana-J. Phys., 74, 6.
  45. W. A. Bhutto, A. M. Soomro, A. H. Nizamani, H. Saleem, M. A. Khaskheli, A. G. Sahito, R. Das, U. A. Khan, S. Saleem, (2019), "Controlled Growth of Zinc Oxide Nanowire Arrays by Chemical Vapor Deposition (CVD) Method," IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 8.