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[Abstract]

The primary goal of software testing is to identify and correct errors within software. A key 
challenge in this process is error masking, where errors disappear internally before reaching the output. 
This paper investigates the causes and characteristics of error masking, which complicates software 
testing. The study involved injecting artificial errors into three software programs to examine the extent 
of error masking by various test cases and to explore the underlying reasons. The experiment yielded 
four major findings. First, about 50% of the error masking occurred because the errors were not 
executed. Second, among various operators, logical and arithmetic operators masked errors less 
frequently, while relational and temporal operators tended to mask errors more extensively. Third, 
certain test cases demonstrated exceptional effectiveness in propagating errors to the output. Fourth, the 
type of error injected influenced the masking effect. 
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[요   약]

소프트웨어 테스팅의 궁극적인 목표는 소프트웨어의 에러를 찾아내고 수정하는 것이다. 소프트

웨어 에러를 발견하기 어렵게 만드는 요인 중에는 소프트웨어의 에러가 출력에 도달하기 전에 내

부에서 마스킹 되어 사라지는 것이다. 이 논문의 목적은 소프트웨어 테스팅을 어렵게 만드는 에

러 마스킹의 원인 및 특성을 조사하는 것이다. 이를 위해 3개의 소프트웨어를 대상으로 인위적인 

에러를 주입하여 그 에러가 다양한 테스트 케이스들에 의해서 얼마만큼 마스킹 되는지, 그리고 

그 원인은 무엇인지를 조사하였다. 실험 결과 4가지 주요 발견이 도출 되었다. 첫째, 약 50% 정도

의 에러 마스킹은 에러가 실행되지 않았기 때문에 발생하였다. 둘째, 여러 연산자들 중에서 논리 

연산자와 산술연산자는 에러를 상대적으로 적게 마스킹하고, 관계연산자와 시간 연산자는 에러를 

상대적으로 많이 마스킹하였다. 셋째, 테스트 케이스들 중에 에러를 출력까지 전파시키는데 특별

한 성능을 보이는 테스트 케이스의 존재를 확인할 수 있었다. 넷째, 주입한 에러의 종류에 따라서 

마스킹 효과가 다르다는 것을 확인할 수 있었다.
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I. Introduction

The primary goal of software testing is to find 
errors in the software and fix them before the 
program is released [1]. Thus, much research has 
focused on improving the testing process to 
achieve this goal. For example, many studies have 
attempted to generate more rigorous test data to 
more thoroughly execute the construct of the 
software. Recently, a test oracle, a mechanism 
that determines the success or failure of testing, 
has also drawn the attention of researchers as a 
factor to increase the fault-finding capability of 
testing [2,3,4]. 

However, previous work has found that many 
errors in the software cannot be caught even 
using the most rigorous test data and test oracle 
[5,6]. Nevertheless, the testing community has not 
found explicit evidence for why the errors cannot 
be caught during testing. The inability to detect 
errors during testing can often be linked to not 
meeting the specific criteria set forth in the RIP 
(Reachability, Infection, Propagation) model 
[7,8,9,10]. This model outlines essential conditions 
for error detection in software testing, suggesting 
that successful error detection is contingent upon 
fulfilling these conditions. In the RIP model, 
Reachability means that a faulty construct in the 
software is executed during test execution and 
Infection means that a fault in the software is 
changed to an erroneous state, so at least one 
variable in the software is infected by a fault. 
Finally, Propagation means that the erroneous 
value of a variable is propagated to output. If any 
one of these three conditions fails to be satisfied, 
errors cannot be revealed during testing.

In the test community, there is no clear 
understanding of what factors are predominant in 
not discovering errors during testing. In addition, 
to the best of our knowledge, no previous study 
has examined when an error is masked out before 
it propagates to the monitored variable, and what 
construct in the program plays a pivotal role in 

this masking.
In this paper, we introduce experimental results 

to investigate the causes of missing errors during 
testing. For the experiment, we use three software 
that are all in the form of Lustre language [11,12]. 
We generate test suites (set of test cases) 
satisfying three different structural coverage 
criteria: condition, decision, and MC/DC. We also 
generate 400 mutants per software by seeding a 
simple typo fault into each software. Test 
execution is performed using test cases with 
mutants and the original model (oracle, hereafter). 
During test execution, we monitor the value of 
each variable of the mutant and oracle and 
compare the values of the mutant and oracle 
variables. We finally determine if the error 
propagates to the output variable. If the error 
does not propagate to the output variable, we 
investigate the reason for missing the error. 

The results of our experiment draw four key 
conclusions. First, the main cause of missing 
errors is due to the reachability failure. Second, 
among various operators, logical and arithmetic 
operators masked errors less frequently, while 
relational and temporal operators tended to mask 
errors more extensively. Third, certain test cases 
demonstrated exceptional effectiveness in 
propagating errors to the output. Fourth, the type 
of error injected influenced the masking effect.

II. Background and Related Work

In this section, we present the definition of 
terms that we used in this paper and explain the 
Lustre language. We also discuss some related 
works regarding error masking and propagation 
issues during software testing.

1. Terminology
l Fault: it refers to mistakes, like a typo, in the 

source code, a faulty instruction or missing 
data [13]. 
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l Error: it refers to an erroneous state of the 
program when a fault is executed, which 
results in an erroneous value in at least one 
variable [13].

l Reachability failure: In Lustre, every variable 
is evaluated at each time step, distinguishing 
it significantly from other languages. 
However, despite this evaluation, not all 
constructs in Lustre necessarily execute. For 
instance, within the construct "if C then S1 
else S2," both S1 and S2 are evaluated, but 
only the branch selected by the conditional C 
executes. Therefore, in our experiments, 
reachability failure only occurs in scenarios 
involving this specific conditional construct.

l Infection failure: This failure happens when 
there is a fault in the software, but an error 
is not manifested in any variable in the 
software. For example, if the original 
program “A OR B” has been replaced with “A 
AND B” and the test input is True for A and 
B, the error cannot be manifested even 
though a fault exists in the program.

l Propagation failure: This failure happens 
when an error is manifested but disappears 
during the operation of operators. For 
example, suppose variable A is an error. In 
an expression, “C = A AND B,” if B is false, 
then the value of C becomes false regardless 
of the value of A. In this case, the error in A 
is masked out by the AND operator. We 
further classify masked cases into the 
following: logical operator masking, 
relational operator masking, temporal 
masking, arithmetic operator masking.

    Ÿ Logical operator masking: This masking 
occurs by the logical operator.

    Ÿ Relational operator masking: This masking 
occurs by a relational operator. For 
example, suppose the correct value of 
variable B is 3, but it has 4 instead. In 
expression “C = 5 >= B,” the error in B will 
be masked out in C.  

    Ÿ Temporal masking: This masking occurs 
by a delay operator. In the expression “C 
= 1 → PRE(B) ,” C will have a stream of 
values. The first value is 1 followed by a 
one-step previous value of B. The error in 
B will propagate to C at time step 2 since 
the value 1 will be assigned to C at time 
step 1. If the test terminates at time step 
1, then the error is masked out in C.

    Ÿ Arithmetic operator masking: This masking 
occurs by an arithmetic operator. In 
expression “C = B / 10,” suppose the 
correct value of B is 3, but it has 4 
instead. The evaluation of the expression 
becomes 0 for both cases since the type of 
the expression is an integer. Thus, the 
error in B is masked out in C 

2. Lustre Language
Lustre [11,12] is a declarative and synchronous 

dataflow programming language proposed for the 
design of reactive systems. Lustre is the core 
language of the SCADE tool [14], developed by 
Esterel Technologies, and is commonly used for 
critical control software in aircraft and nuclear 
power plants. This language is based on a 
synchronous paradigm, and the behavior of a 
system is a sequence of reactions. Each reaction 
is meant to read current inputs, update the value 
of the variables and evaluate the output value. 
The synchronous paradigm assumes that the 
reaction of the system is instantaneous. The 
Lustre program consists of nodes, which models 
the subprogram in the modular language. 

3. Related works
Study on the error flow characteristic of a 

system can be classified into two areas. The first 
area is the study about how the productive test 
cases, which can enforce the error to propagate 
to output, can be generated. Most works to 
improve the quality of test cases in terms of 
structural coverage criteria fall into this area. 
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Much research focuses on improving the quality 
of test case satisfying the traditional coverage 
criteria such as condition, decision, branch and 
MC/DC [15,16]. Recently, Whalen et al. [13,17] 
suggested a new structural coverage criterion, 
called Observable MC/DC (OMC/DC), that 
combines the MC/DC coverage metric with a 
notion of observability. This coverage criterion 
ensures that the error in the program has to 
propagate to a monitored variable. 

The second area is the study about investigating 
the error propagation characteristic of the 
program. Several previous works on measuring 
the error propagation probability of the system 
are related to this area [18,19,20,21,22].  

Goraddia [18] suggested a dynamic impact 
analysis to measure the impact strength of error 
propagation from a variable to the other variable. 
The goal of this approach was to estimate the 
pervasiveness of errors through program 
construct. 

Voss [19] proposed a sensitivity analysis to rank 
program locations based on their ability 
(sensitivity) to propagate an error in their location 
to output variables. The sensitivity of a location 
depends on the execution probability, infection 
probability, and propagation probability in the 
location. 

Abdelmoez et al. [20] suggested an estimation 
technique of error propagation probability between 
software components. Error propagation matrix is 
computed from the error propagation probability 
among components. 

Jahangirova et al. [21] carried out an empirical 
analysis on the characteristics of failed error 
propagation across six real-world Java 
open-source projects involving 386 actual faults. 
Their findings indicated that the impact of failed 
error propagation is minimal during unit-level 
tests but becomes significantly more pronounced 
in system-level testing.

Chan et al. [22] developed a framework named 
Invariant Propagation Analysis (IPA), which 

automatically generates dynamic invariants by 
instrumenting source code at the entry and exit 
points of functions. This approach aims to analyze 
error propagation in multi-threaded programs.

III. Experiment

We are interested in understanding how many 
errors in the software are missing (not revealed) 
during testing and what factors are attributed to 
the missing errors. To answer this question, we 
designed experiments. 

For the experiment, we perform the following 
steps:

1. We choose 3 Lustre software as case 
examples to be used in the experiment (Section 
III.1).

2. We generate 400 mutants for each case 
examples, with each mutant containing a single 
fault (Section III.2)

3. We generate the test suite satisfying 
condition, decision, and MC/DC coverage (Section 
III.3)

4. We run the mutant and oracle with the test 
suites to investigate the cause of the missing error 
(Section III.4). 

1. Case Examples
For the case example in this study, we use 3 

software in the Lustre language form. Two of 
these systems, Infusion and Alarm, are medical 
systems designed for medical research [23]; 
Infusion is a prescription management system and 
Alarm is an alarm-induced system of an infusion 
pump device. The other system is a Microwave 
system that controls microwave ovens developed 
by Rockwell Collins [17]. All models are 
non-proprietary and developed for research and 
teaching purposes. Table 1 provides details about 
the case examples.
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Line of 
code

# input
variable

# output 
variable

# internal
variable

Infusion 6485 20 5 825
Alarm 6117 42 5 934

Microwave 1444 13 4 46

Table 1. Case example information

2. Mutant Generation
We generate 400 mutants for each case example 

by replacing a program construct of correct model 
(oracle) into a different construct. The seeded 
fault (replaced construct) is type-compatible to 
original one so that it does not trigger grammar 
errors during compile time. Each fault falls into 
one of 4 different types and 100 mutants was 
created for each type (totally 400 mutants for a 
case example).  
l Logical operator fault: A logical operator is 

randomly chosen and replaced by a different 
one.

l Arithmetic operator fault: An arithmetic operator 
is randomly chosen and replaced by a different 
one.

l Relational operator fault: A relational operator 
is randomly chosen and replaced by a different 
one.

l Literal fault: A literal is randomly chosen and 
replaced by a larger or less literal one. For 
example, 3 is replaced by 2 or 4 in a random 
manner.

3. Test Case Generation
In this study, we generate test suites (a set of 

test cases) satisfying three structural coverage 
criteria: condition coverage, decision coverage, 
and modified condition/decision coverage 
(MC/DC). Before explaining the coverage criteria, 
we first introduce the terms: “condition” and 
“decision”. Condition is a Boolean expression 
containing no Boolean operators. Decision is a 
Boolean expression composed of conditions and 
zero or more Boolean operators.  
l Condition coverage: This coverage criterion is 

achieved when the condition is evaluated as 
both true and false at least once during the 
execution of the test suite. 

l Decision coverage: This coverage criterion is 
achieved when the decision is evaluated as 
both true and false at least once during the 
execution of the test suite

l MC/DC coverage: This coverage criterion is 
achieved when every condition in a decision 
in the program is evaluated as both true and 
false at least once, every decision in the 
program is evaluated to true or false at least 
once, and each condition in a decision has 
been shown to independently affect that 
decision’s outcome. 

A more detailed explanation about the structural 
coverage criteria can be found in the [16]. Table 2 
shows the size of the test suites (number of test 
cases in the test suite) achieving the three 
structural coverage criteria for the case examples.

Condition
coverage

Decision
coverage

MC/DC 
coverage

Infusion 91 69 104
Alarm 232 196 227

Microwave 850 392 724

Table 2. Number of test cases for case examples

4. Test Execution
We run the experiment to examine the number 

of missing errors and the causes. 
First, we run the oracle program with the test 

suites as explained above and record the values of 
every programming construct (including the 
variables) at every time step during test execution. 
For example, in the expression “C = A * B + 3 >= 
10,” we record the result of every subexpression 
during evaluation such as “A * B,” and “A * B + 
3,” “A * B + 3 >= 10.” To this end, we construct a 
parse tree like a structure (called an error 
propagation tree) for the Lustre program. During 
test execution, we trace the data flows from the 
input variable to the output variable in the error 
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propagation tree and record the value changes at 
every construct of the tree at every time step.    

Second, we run the mutant program and record 
the value changes in the same way as the oracle 
program.

Third, we compare the recorded values of the 
oracle with those of the mutant and identify the 
error-missing points when the error does not 
propagate to a further construct in the error 
propagation tree. 

Finally, we categorize the cause of each missing 
error based on the construct type of the 
error-missing points. 

They are further categorized as reachability 
failure, infection failure, or propagation failure. 
Propagation failure is further classified into logical 
operator masking, relational operator masking, 
arithmetic operator masking, or temporal 
masking.

Fig. 1. Experiment process with oracle and mutant

Fig 1 illustrates the experiment process using an 
oracle and a mutant. In the oracle program, a '+' 
operator is replaced with a '-' to create a mutant. 
For the test case, the input variable A is set to 1, 
and input variable B to 2. Following the error 
propagation tree, both the oracle and the mutant 
yield a result of 2 at the '*' operator. However, at 
the oracle’s '+' operator, the result is 5, whereas 
at the mutant's '-' operator, it results in -1, 
allowing for the detection of an error through 

comparison. Nonetheless, at the '>=' operator, 
both the oracle and the mutant produce a false 
value, leading to the error being masked. 
Consequently, a propagation failure occurs, 
primarily due to relational operator masking.

IV. Results and Implications

In this section, we present our results and 
discuss the implications. We first present our 
findings on the characteristics of the test suites, 
test cases, and mutant types on revealing errors 
in the mutants. Next, we discuss implications of 
the findings. Finally, we present threats to the 
validity of our study.

1. Experiment Results
Table 3 shows the ratio of mutants that are 

caught by at least one test cases in the test suite 
for each case example. The results indicate that in 
more than 60% of the mutants, the seeded fault 
was not executed, or was not manifested, or was 
masked out during the execution of all test cases 
in the test suite. Even the more rigorous test suite 
(MC/DC) did not show superior power to catch 
errors in our experiment. The cause of these 
results will be addressed in the Implications 
section.

Condition
coverage

Decision 
coverage

MC/DC 
coverage

Infusion 22.5% 26.5% 31.3%
Alarm 30.0% 26.8% 28.2%

Microwave 40.0% 39.3% 37.8%

Table 3. Percentage of mutants caught for each 
case example over the test suites

Table 4 illustrates the fault detection capabilities 
of each test case within a test suite. It highlights 
that the average percentage of mutants each test 
case could identify as faulty was below 10%. This 
indicates that individual test cases are significantly 
less effective in revealing faults compared to the 
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collective detection rate of the test suites. 
Additionally, the test cases within the MC/DC test 
suite exhibited slightly better error detection rate 
than those within the Condition or Decision test 
suites. While the average error detection capability 
of the test cases is quite low, there exist individual 
test cases with significantly superior error 
detection performance. Fig 2 demonstrates the 
number of mutants detected by each test case, 
revealing considerable variation in their 
error-catching abilities. As shown in Fig 2, in the 
Infusion, more than 50 test cases failed to detect 
any mutants, whereas one test case detected 79 
mutants. In the Alarm, some test cases caught 
only 2 mutants, while another managed to detect 
47 mutants. Similarly, in the Microwave, while 
some test cases caught 10 mutants, another was 
able to detect as many as 84 mutants. This 
indicates a wide disparity in performance among 
individual test cases within the same test suites.

Condition
coverage

Decision
coverage

MC/DC
coverage

Infusion 3.7% 3.9% 4.2%
Alarm 3.2% 2.9% 3.2%

Microwave 9.4% 9.6% 10.0%

Table 4. Average percentage of mutants detected 
by each test case in every given case example

Table 5 shows the average percentage of 
mutants caught by the test cases by mutant type. 
The types of mutants most frequently caught vary 
by case example. For instance, in the Infusion, 
relational operator faults were the most frequently 
detected, while in Alarm, literal faults 
predominated, and in Microwave, relational 
operator faults were again most prevalent. 
Although the most commonly caught mutant type 
differs across case examples, within each case 
example there is a significant disparity between the 
most and least caught mutant types. In Infusion, 
the ratio between the most and least caught mutant 
types is approximately 3.4 times; in Alarm, it is 3 
times; and in Microwave, it reaches 3.7 times. This 

highlights substantial variations in detection 
effectiveness within individual case examples.

Fig. 2. Number of mutants revealed by the number 

of test cases for each case example

Logical 
operator

Arithmetic 
operator

Relational 
operator

Literal
fault

Infusion 3.6% 1.5% 5.7% 5.1%
Alarm 2.6% 1.5% 3.7% 4.5%

Microwave 7.6% 15.4% 11.5% 4.2%

Table 5. Average percentage of mutants caught 
for each case example over mutant types

Logical 
operator

Arithmetic 
operator

Relational  
operator

Literal 
fault

Infusion
(269)

67
(24.9%)

74
(27.5%)

61
(22.7%)

67
(24.9%)

Alarm
(268)

57
(21.3%)

81
(30.2%)

67
(25%)

63
23.5%)

Microwave
(225)

52
(21.3%)

59
(26.2%)

45
(20%)

69
(23.5%)

Table 6. Number of mutants not caught by any 
test case
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Fig. 3. Distribution of number of mutants caught 

and number of test cases

Table 6 provides another insight about the 
error-revealing characteristics of mutant types. 
The table shows the number of mutants that were 
not caught by any test cases. It is interesting that 
over 50% of the mutants were not caught by any 
test cases regardless of their coverage criteria. Fig 
3 plots the distribution of the number of mutants 
caught and number of test cases. As seen in Fig 3, 
while some mutants are caught by a large number 
of test cases, others are caught by only a few. 
This issue will be further discussed in the 

Implications section.
Table 7 presents the underlying causes for 

errors not detected in our study. Within the 
various case examples, the predominant factor for 
missing errors is a failure in reachability, 
accounting for approximately 50% of all 
undetected errors. Subsequent prevalent causes 
vary by case examples; however, masking by 
relational operators consistently exerts a 
significant influence on propagation failures 
across all cases.

Table 8 delineates the relationship between the 
causes of undetected errors and the test suite 
coverage criteria. Notably, the MC/DC test suite, 
which adheres to the most stringent coverage 
criteria, exhibits the highest incidence of 
reachability failures. While this will be further 
addressed in the Implications section, it can be 
observed that the MC/DC test cases frequently 
miss errors in IF-then-else statements. For other 
types of missing errors, no significant differences 
were observed across different coverage criteria.

Table 9 presents the causes of errors not 
detected in relation to the types of mutants. A 
notable observation is that literal mutants 
consistently show a higher incidence of 
reachability failures across all case examples. This 
is likely because the location of literal faults is 
predominantly within If-then-else statements, 
which were not executed. Infection failures for 
literal mutants are uniformly 0% across all cases, 
suggesting that if a literal fault is executed, it 
invariably transitions the software to an erroneous 
state. Moreover, logical and relational operator 
faults exhibit a relatively higher rate of missing 
errors due to infection failures. This indicates that 

Reachability 
failure

Infection 
failure

Propagation failure
LOM ROM TM AOM

Infusion 48.2% 1.4% 2.3% 24.2% 23.9% 0%
Alarm 49.3% 11.1% 1.4% 30.6% 7.0% 0.4%

Microwave 57.0% 22.7% 2.1% 8.2% 2.4% 7.6%

Table 7. Causes of missing errors for the case examples (LOM: logical operator masking, ROM: relational 
operator masking, TM: temporal masking, AOM: arithmetic operator masking)
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even if these operators are replaced by others, the 
output may not change depending on the input, 
meaning that errors can remain masked. For 
example, if the expression "A and B" is altered to 
"A or B," the output remains unchanged when both 
A and B are either true or false, hence masking 
the error.

2. Implications
The experiment in this study reveals several 

insights about factors that influence test 
effectiveness as follows.

2.1 Most influential factor for missing errors 
As indicated in Table 7, it is very interesting 

that over 50% of the errors disappear due to 
reachability failure regardless of the coverage 
criteria. This is a counter-intuitive result from two 
perspectives. First, much research has attempted 

to generate productive test cases to enforce test 
cases to comb every program structure under 
test. However, our results show that a significant 
number of errors are not propagated to a further 
program construct due to not being chosen from 
the “If C then S1 else S2” construct. Second, we 
believe the test suite with more rigorous coverage 
criterion will be superior to overcome the masking 
effect of a program construct. As noted in Table 
8, however, the MC/DC test suite shows less 
capability to cope with the masking effect of the 
“If C then S1 else S2” construct. The analysis of 
the source code from the case examples reveals 
that they were initially created using a graphical 
tool called SCADE, and then mechanically 
translated into the Lustre language by a compiler. 
The source code heavily utilizes nested 
If-then-else statements, where a then or else 
clause contains another If-then-else statement, 

Coverage
Criteria

Reachability 
failure

Infection 
failure

Propagation failure
LOM ROM TM AOM

Infusion
Condition 41.4% 1.7% 2.2% 24% 30.6% 0%
Decision 38.5% 1.4% 2.4% 24.2% 33.5% 0%
MC/DC 57.7% 1.2% 2.4% 24.2% 14.6% 0%

Alarm
Condition 49.4% 11.3% 1.4% 30.2% 7.1% 0.4%
Decision 47.5% 11.4% 1.3% 31.3% 8.0% 0.5%
MC/DC 50.8% 10.7% 1.4% 30.5% 6.2% 0.4%

Microwave
Condition 55.8% 23.0% 3.0% 8.6% 2.6% 7.0%
Decision 57.1% 22.7% 1.4% 8.3% 1.8% 8.8%
MC/DC 58.1% 22.5% 1.5% 7.7% 2.6% 7.6%

Table 8. Cause of missing errors for the case examples by coverage criteria (LOM: logical operator 
masking, ROM: relational operator masking, TM: temporal masking, AOM: arithmetic operator masking)

Mutant
type

Reachability 
failure

Infection 
failure

Propagation failure
LOM ROM TM AOM

Infusion

Logical 48.0% 7.4% 3.2% 13.5% 27.8% 0%
Arithmetic 37.4% 0% 1.8% 39.6% 21.3% 0%

Literal 53.3% 0% 1.9% 21.5% 23.3% 0%
Relational 46.6% 4.6% 4.5% 17.0% 27.3% 0%

Alarm

Logical 50.9% 24.5% 0.8% 13.3% 10.5% 0%
Arithmetic 44.6% 3.7% 1.6% 44.1% 4.8% 1.2%

Literal 52.9% 0% 0.9% 41.0% 4.8% 0%
Relational 51.8% 19.8% 2.1% 17.1% 9.2% 0%

Microwave

Logical 53.8% 33.7% 6.5% 2.9% 1.1% 2.0%
Arithmetic 56.6% 27.7% 0.9% 6.1% 0.7% 8.1%

Literal 61.7% 0% 0% 15.6% 1.6% 21.2%
Relational 56.2% 26.6% 1.4% 8.6% 5.5% 1.8%

Table 9. Cause of missing errors for the case by mutant type (LOM: logical operator masking, ROM: 
relational operator masking, TM: temporal masking, AOM: arithmetic operator masking)
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often nested dozens of times. Even the most 
robust MC/DC test suites ensure only that each 
individual If-then-else statement executes both 
then and else clauses but do not guarantee the 
execution of all embedded statements within 
nested structures. This is identified as a 
contributing factor to the problem. Specifically, 
when If-then-else statements are nested, there are 
segments that the MC/DC test suite cannot 
execute. With increased nesting, the unexecuted 
segments become more prevalent. Developing a 
test suite that ensures the execution of every 
decision in such nested If-then-else statements 
will be further research topic.

2.2 Least influential factor for missing errors
As indicated in Table 7, logical operator 

masking and arithmetic operator masking has the 
least influence on missing errors during testing. 
This is also a somewhat counter-intuitive result to 
the most common belief. The chance of errors 
being masked in a logical operator is 50%. Thus, 
we expect that the logical operator will be an 
influential factor in error masking. However, our 
experiment showed that a logical operator has a 
much lower impact on error masking than that of 
a relational operator and temporal masking.

2.3 Critical test cases 
As shown in Table 4, the fault-finding capability 

of most individual test cases is very disappointing. 
Among 400 mutants, the average percentage of 
mutants that the individual test case caught was 
below 10%. More surprisingly, among the 262 test 
cases in the Infusion case example, 52 test cases 
did not catch any mutant, as shown in Fig 1. 
However, the other single test case caught 79 
mutants in the same case example. We call this 
exceedingly productive test case a critical test 
case. The other case examples include a test case 
that caught 47 mutants in the Alarm case example 
and a test case that caught 84 mutants in the 
Microwave case example. Including a critical test 

case in the test suite can significantly affect the 
fault-finding capability of test suites. If we can 
generate as many critical test cases as possible, 
the testing efficiency will be further enhanced. 
However, there is still little understanding on what 
makes a critical test case and how. 

2.4 Pervasive vs. insulant mutant 
As shown in Tables 5 and 6, some mutants are 

very insulant to propagate errors to other 
constructs of the program. For example, the 
Infusion case example has 269 mutants that were 
not caught by any test cases. The errors in these 
mutants are very difficult to find. On the other 
hand, some mutants are very pervasive in 
propagating errors to other constructs of the 
program. As an example, four mutants in Infusion 
were caught by 206 test cases. Further research 
should focus on what makes a mutant pervasive 
or insulant in propagating errors in the software.

3. Threats to Validity
l Mutant generation: We generate four different 

fault type to simulate the programmers’ faults 
during programming. The faults generated 
were just a replacement of an operator or 
literal. This simple fault scheme does not fit 
with programmers’ real faults such as 
replacing variables or omitting instructions. 
The reason we use this restricted fault type is 
due to the limitation of our tool. If the 
program structure of mutants is far different 
from the original program (oracle), comparing 
variables between the oracle and mutant 
becomes impossible or much more 
challenging. However, we believe that the 
causes of missing errors are similar to our 
results when even complicated faults are 
used. This is because the missing errors due 
to reachability failure or propagation failure 
will be equally applied to complicated faults.

l Test suite coverage: We generate a test suite 
using the open source program released by 
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Gregory Gay, Assistant Professor in the 
Department of Computer Science & 
Engineering, at the University of South 
Carolina. However, we are not sure if the 
generated test suite fully achieves the 
intended coverage criteria. Depending on the 
program structure, it is not possible to 
generate a test suite to satisfy a certain 
coverage criteria. Thus, the test suite 
generated in this study may not fully achieve 
the intended coverage criteria. Nevertheless, 
the main purpose of this study is not to 
investigate the quality of the test suite, but to 
investigate the characteristics of error 
propagation and masking. Thus, even with 
the current test suite, the contribution of this 
study will not be compromised. 

l Language choice: We used Lustre as the basic 
language for the experiments and analysis. 
Although Lustre is not a popular language 
compared to more common languages, it has 
a similar structure to systems written in C or 
C++. There are also translation tools from 
Lustre program to C or C++ program. Thus, 
we believe our results are also applicable to 
programs written in those languages.

V. Conclusions

In this study, we examine the cause of missing 
errors during testing. The experimental results 
indicate that more than 50% of the missing errors 
occur because they do not have a chance to 
execute. If an error is not executed, it cannot 
further propagate to other places. Relational 
operator has a relatively higher impact on error 
masking. In contrast, logical operator and 
arithmetic operator have a very small impact on 
error masking. This finding suggests that much 
work remains to be done to determine a way to 
execute programs more thoroughly and 
elaborately.

We also found that a large portion of test cases 
showed a very poor capability to catch errors in 
mutants while a few test cases showed a very 
impressive capability to catch these errors. In 
addition, some mutants are very pervasive in 
propagating errors while others were very insolent 
to transmit errors. Further research is needed to 
address these findings to seek answers on what 
causes these differences.
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