
JKSCI 한국컴퓨터정보학회논문지
Journal of The Korea Society of Computer and Information

Vol. 29 No. 6, pp. 89-100, June 2024
https://doi.org/10.9708/jksci.2024.29.06.089

Main causes of missing errors during software testing

1)Young-Mi Kim*, Myung-Hwan Park**

*Ph.D. Student, Dept. of Computer & Radio Communication Engineering, Korea University, Seoul, Korea
**Associate Professor, Dept. of Computer Science, Korea Air Force Academy, Cheongju, Korea

[Abstract]

The primary goal of software testing is to identify and correct errors within software. A key
challenge in this process is error masking, where errors disappear internally before reaching the output.
This paper investigates the causes and characteristics of error masking, which complicates software
testing. The study involved injecting artificial errors into three software programs to examine the extent
of error masking by various test cases and to explore the underlying reasons. The experiment yielded
four major findings. First, about 50% of the error masking occurred because the errors were not
executed. Second, among various operators, logical and arithmetic operators masked errors less
frequently, while relational and temporal operators tended to mask errors more extensively. Third,
certain test cases demonstrated exceptional effectiveness in propagating errors to the output. Fourth, the
type of error injected influenced the masking effect.

▸Key words: Error masking, Error propagation, Test cases, Test suite, Testing efficiency, Mutant

[요 약]

소프트웨어 테스팅의 궁극적인 목표는 소프트웨어의 에러를 찾아내고 수정하는 것이다. 소프트

웨어 에러를 발견하기 어렵게 만드는 요인 중에는 소프트웨어의 에러가 출력에 도달하기 전에 내

부에서 마스킹 되어 사라지는 것이다. 이 논문의 목적은 소프트웨어 테스팅을 어렵게 만드는 에

러 마스킹의 원인 및 특성을 조사하는 것이다. 이를 위해 3개의 소프트웨어를 대상으로 인위적인

에러를 주입하여 그 에러가 다양한 테스트 케이스들에 의해서 얼마만큼 마스킹 되는지, 그리고

그 원인은 무엇인지를 조사하였다. 실험 결과 4가지 주요 발견이 도출 되었다. 첫째, 약 50% 정도

의 에러 마스킹은 에러가 실행되지 않았기 때문에 발생하였다. 둘째, 여러 연산자들 중에서 논리

연산자와 산술연산자는 에러를 상대적으로 적게 마스킹하고, 관계연산자와 시간 연산자는 에러를

상대적으로 많이 마스킹하였다. 셋째, 테스트 케이스들 중에 에러를 출력까지 전파시키는데 특별

한 성능을 보이는 테스트 케이스의 존재를 확인할 수 있었다. 넷째, 주입한 에러의 종류에 따라서

마스킹 효과가 다르다는 것을 확인할 수 있었다.

▸주제어: 에러 마스킹, 에러 전파, 테스트 케이스, 테스트 수트, 테스팅 효율성, 뮤턴트

∙First Author: Young-Mi Kim, Corresponding Author: Myung-Hwan Park
 *Young-Mi Kim (myjulietkim@gmail.com), Dept. of Computer & Radio Communication Engineering, Korea University
 **Myung-Hwan Park (pigisum@gmail.com), Dept. of Computer Science, Korea Air Force Academy
∙Received: 2023. 05. 08, Revised: 2024. 05. 27, Accepted: 2024. 06. 11.

Copyright ⓒ 2024 The Korea Society of Computer and Information
 http://www.ksci.re.kr pISSN:1598-849X | eISSN:2383-9945

90 Journal of The Korea Society of Computer and Information

I. Introduction

The primary goal of software testing is to find
errors in the software and fix them before the
program is released [1]. Thus, much research has
focused on improving the testing process to
achieve this goal. For example, many studies have
attempted to generate more rigorous test data to
more thoroughly execute the construct of the
software. Recently, a test oracle, a mechanism
that determines the success or failure of testing,
has also drawn the attention of researchers as a
factor to increase the fault-finding capability of
testing [2,3,4].

However, previous work has found that many
errors in the software cannot be caught even
using the most rigorous test data and test oracle
[5,6]. Nevertheless, the testing community has not
found explicit evidence for why the errors cannot
be caught during testing. The inability to detect
errors during testing can often be linked to not
meeting the specific criteria set forth in the RIP
(Reachability, Infection, Propagation) model
[7,8,9,10]. This model outlines essential conditions
for error detection in software testing, suggesting
that successful error detection is contingent upon
fulfilling these conditions. In the RIP model,
Reachability means that a faulty construct in the
software is executed during test execution and
Infection means that a fault in the software is
changed to an erroneous state, so at least one
variable in the software is infected by a fault.
Finally, Propagation means that the erroneous
value of a variable is propagated to output. If any
one of these three conditions fails to be satisfied,
errors cannot be revealed during testing.

In the test community, there is no clear
understanding of what factors are predominant in
not discovering errors during testing. In addition,
to the best of our knowledge, no previous study
has examined when an error is masked out before
it propagates to the monitored variable, and what
construct in the program plays a pivotal role in

this masking.
In this paper, we introduce experimental results

to investigate the causes of missing errors during
testing. For the experiment, we use three software
that are all in the form of Lustre language [11,12].
We generate test suites (set of test cases)
satisfying three different structural coverage
criteria: condition, decision, and MC/DC. We also
generate 400 mutants per software by seeding a
simple typo fault into each software. Test
execution is performed using test cases with
mutants and the original model (oracle, hereafter).
During test execution, we monitor the value of
each variable of the mutant and oracle and
compare the values of the mutant and oracle
variables. We finally determine if the error
propagates to the output variable. If the error
does not propagate to the output variable, we
investigate the reason for missing the error.

The results of our experiment draw four key
conclusions. First, the main cause of missing
errors is due to the reachability failure. Second,
among various operators, logical and arithmetic
operators masked errors less frequently, while
relational and temporal operators tended to mask
errors more extensively. Third, certain test cases
demonstrated exceptional effectiveness in
propagating errors to the output. Fourth, the type
of error injected influenced the masking effect.

II. Background and Related Work

In this section, we present the definition of
terms that we used in this paper and explain the
Lustre language. We also discuss some related
works regarding error masking and propagation
issues during software testing.

1. Terminology
l Fault: it refers to mistakes, like a typo, in the

source code, a faulty instruction or missing
data [13].

Main causes of missing errors during software testing 91

l Error: it refers to an erroneous state of the
program when a fault is executed, which
results in an erroneous value in at least one
variable [13].

l Reachability failure: In Lustre, every variable
is evaluated at each time step, distinguishing
it significantly from other languages.
However, despite this evaluation, not all
constructs in Lustre necessarily execute. For
instance, within the construct "if C then S1
else S2," both S1 and S2 are evaluated, but
only the branch selected by the conditional C
executes. Therefore, in our experiments,
reachability failure only occurs in scenarios
involving this specific conditional construct.

l Infection failure: This failure happens when
there is a fault in the software, but an error
is not manifested in any variable in the
software. For example, if the original
program “A OR B” has been replaced with “A
AND B” and the test input is True for A and
B, the error cannot be manifested even
though a fault exists in the program.

l Propagation failure: This failure happens
when an error is manifested but disappears
during the operation of operators. For
example, suppose variable A is an error. In
an expression, “C = A AND B,” if B is false,
then the value of C becomes false regardless
of the value of A. In this case, the error in A
is masked out by the AND operator. We
further classify masked cases into the
following: logical operator masking,
relational operator masking, temporal
masking, arithmetic operator masking.

 Ÿ Logical operator masking: This masking
occurs by the logical operator.

 Ÿ Relational operator masking: This masking
occurs by a relational operator. For
example, suppose the correct value of
variable B is 3, but it has 4 instead. In
expression “C = 5 >= B,” the error in B will
be masked out in C.

 Ÿ Temporal masking: This masking occurs
by a delay operator. In the expression “C
= 1 → PRE(B) ,” C will have a stream of
values. The first value is 1 followed by a
one-step previous value of B. The error in
B will propagate to C at time step 2 since
the value 1 will be assigned to C at time
step 1. If the test terminates at time step
1, then the error is masked out in C.

 Ÿ Arithmetic operator masking: This masking
occurs by an arithmetic operator. In
expression “C = B / 10,” suppose the
correct value of B is 3, but it has 4
instead. The evaluation of the expression
becomes 0 for both cases since the type of
the expression is an integer. Thus, the
error in B is masked out in C

2. Lustre Language
Lustre [11,12] is a declarative and synchronous

dataflow programming language proposed for the
design of reactive systems. Lustre is the core
language of the SCADE tool [14], developed by
Esterel Technologies, and is commonly used for
critical control software in aircraft and nuclear
power plants. This language is based on a
synchronous paradigm, and the behavior of a
system is a sequence of reactions. Each reaction
is meant to read current inputs, update the value
of the variables and evaluate the output value.
The synchronous paradigm assumes that the
reaction of the system is instantaneous. The
Lustre program consists of nodes, which models
the subprogram in the modular language.

3. Related works
Study on the error flow characteristic of a

system can be classified into two areas. The first
area is the study about how the productive test
cases, which can enforce the error to propagate
to output, can be generated. Most works to
improve the quality of test cases in terms of
structural coverage criteria fall into this area.

92 Journal of The Korea Society of Computer and Information

Much research focuses on improving the quality
of test case satisfying the traditional coverage
criteria such as condition, decision, branch and
MC/DC [15,16]. Recently, Whalen et al. [13,17]
suggested a new structural coverage criterion,
called Observable MC/DC (OMC/DC), that
combines the MC/DC coverage metric with a
notion of observability. This coverage criterion
ensures that the error in the program has to
propagate to a monitored variable.

The second area is the study about investigating
the error propagation characteristic of the
program. Several previous works on measuring
the error propagation probability of the system
are related to this area [18,19,20,21,22].

Goraddia [18] suggested a dynamic impact
analysis to measure the impact strength of error
propagation from a variable to the other variable.
The goal of this approach was to estimate the
pervasiveness of errors through program
construct.

Voss [19] proposed a sensitivity analysis to rank
program locations based on their ability
(sensitivity) to propagate an error in their location
to output variables. The sensitivity of a location
depends on the execution probability, infection
probability, and propagation probability in the
location.

Abdelmoez et al. [20] suggested an estimation
technique of error propagation probability between
software components. Error propagation matrix is
computed from the error propagation probability
among components.

Jahangirova et al. [21] carried out an empirical
analysis on the characteristics of failed error
propagation across six real-world Java
open-source projects involving 386 actual faults.
Their findings indicated that the impact of failed
error propagation is minimal during unit-level
tests but becomes significantly more pronounced
in system-level testing.

Chan et al. [22] developed a framework named
Invariant Propagation Analysis (IPA), which

automatically generates dynamic invariants by
instrumenting source code at the entry and exit
points of functions. This approach aims to analyze
error propagation in multi-threaded programs.

III. Experiment

We are interested in understanding how many
errors in the software are missing (not revealed)
during testing and what factors are attributed to
the missing errors. To answer this question, we
designed experiments.

For the experiment, we perform the following
steps:

1. We choose 3 Lustre software as case
examples to be used in the experiment (Section
III.1).

2. We generate 400 mutants for each case
examples, with each mutant containing a single
fault (Section III.2)

3. We generate the test suite satisfying
condition, decision, and MC/DC coverage (Section
III.3)

4. We run the mutant and oracle with the test
suites to investigate the cause of the missing error
(Section III.4).

1. Case Examples
For the case example in this study, we use 3

software in the Lustre language form. Two of
these systems, Infusion and Alarm, are medical
systems designed for medical research [23];
Infusion is a prescription management system and
Alarm is an alarm-induced system of an infusion
pump device. The other system is a Microwave
system that controls microwave ovens developed
by Rockwell Collins [17]. All models are
non-proprietary and developed for research and
teaching purposes. Table 1 provides details about
the case examples.

Main causes of missing errors during software testing 93

Line of
code

input
variable

output
variable

internal
variable

Infusion 6485 20 5 825
Alarm 6117 42 5 934

Microwave 1444 13 4 46

Table 1. Case example information

2. Mutant Generation
We generate 400 mutants for each case example

by replacing a program construct of correct model
(oracle) into a different construct. The seeded
fault (replaced construct) is type-compatible to
original one so that it does not trigger grammar
errors during compile time. Each fault falls into
one of 4 different types and 100 mutants was
created for each type (totally 400 mutants for a
case example).
l Logical operator fault: A logical operator is

randomly chosen and replaced by a different
one.

l Arithmetic operator fault: An arithmetic operator
is randomly chosen and replaced by a different
one.

l Relational operator fault: A relational operator
is randomly chosen and replaced by a different
one.

l Literal fault: A literal is randomly chosen and
replaced by a larger or less literal one. For
example, 3 is replaced by 2 or 4 in a random
manner.

3. Test Case Generation
In this study, we generate test suites (a set of

test cases) satisfying three structural coverage
criteria: condition coverage, decision coverage,
and modified condition/decision coverage
(MC/DC). Before explaining the coverage criteria,
we first introduce the terms: “condition” and
“decision”. Condition is a Boolean expression
containing no Boolean operators. Decision is a
Boolean expression composed of conditions and
zero or more Boolean operators.
l Condition coverage: This coverage criterion is

achieved when the condition is evaluated as
both true and false at least once during the
execution of the test suite.

l Decision coverage: This coverage criterion is
achieved when the decision is evaluated as
both true and false at least once during the
execution of the test suite

l MC/DC coverage: This coverage criterion is
achieved when every condition in a decision
in the program is evaluated as both true and
false at least once, every decision in the
program is evaluated to true or false at least
once, and each condition in a decision has
been shown to independently affect that
decision’s outcome.

A more detailed explanation about the structural
coverage criteria can be found in the [16]. Table 2
shows the size of the test suites (number of test
cases in the test suite) achieving the three
structural coverage criteria for the case examples.

Condition
coverage

Decision
coverage

MC/DC
coverage

Infusion 91 69 104
Alarm 232 196 227

Microwave 850 392 724

Table 2. Number of test cases for case examples

4. Test Execution
We run the experiment to examine the number

of missing errors and the causes.
First, we run the oracle program with the test

suites as explained above and record the values of
every programming construct (including the
variables) at every time step during test execution.
For example, in the expression “C = A * B + 3 >=
10,” we record the result of every subexpression
during evaluation such as “A * B,” and “A * B +
3,” “A * B + 3 >= 10.” To this end, we construct a
parse tree like a structure (called an error
propagation tree) for the Lustre program. During
test execution, we trace the data flows from the
input variable to the output variable in the error

94 Journal of The Korea Society of Computer and Information

propagation tree and record the value changes at
every construct of the tree at every time step.

Second, we run the mutant program and record
the value changes in the same way as the oracle
program.

Third, we compare the recorded values of the
oracle with those of the mutant and identify the
error-missing points when the error does not
propagate to a further construct in the error
propagation tree.

Finally, we categorize the cause of each missing
error based on the construct type of the
error-missing points.

They are further categorized as reachability
failure, infection failure, or propagation failure.
Propagation failure is further classified into logical
operator masking, relational operator masking,
arithmetic operator masking, or temporal
masking.

Fig. 1. Experiment process with oracle and mutant

Fig 1 illustrates the experiment process using an
oracle and a mutant. In the oracle program, a '+'
operator is replaced with a '-' to create a mutant.
For the test case, the input variable A is set to 1,
and input variable B to 2. Following the error
propagation tree, both the oracle and the mutant
yield a result of 2 at the '*' operator. However, at
the oracle’s '+' operator, the result is 5, whereas
at the mutant's '-' operator, it results in -1,
allowing for the detection of an error through

comparison. Nonetheless, at the '>=' operator,
both the oracle and the mutant produce a false
value, leading to the error being masked.
Consequently, a propagation failure occurs,
primarily due to relational operator masking.

IV. Results and Implications

In this section, we present our results and
discuss the implications. We first present our
findings on the characteristics of the test suites,
test cases, and mutant types on revealing errors
in the mutants. Next, we discuss implications of
the findings. Finally, we present threats to the
validity of our study.

1. Experiment Results
Table 3 shows the ratio of mutants that are

caught by at least one test cases in the test suite
for each case example. The results indicate that in
more than 60% of the mutants, the seeded fault
was not executed, or was not manifested, or was
masked out during the execution of all test cases
in the test suite. Even the more rigorous test suite
(MC/DC) did not show superior power to catch
errors in our experiment. The cause of these
results will be addressed in the Implications
section.

Condition
coverage

Decision
coverage

MC/DC
coverage

Infusion 22.5% 26.5% 31.3%
Alarm 30.0% 26.8% 28.2%

Microwave 40.0% 39.3% 37.8%

Table 3. Percentage of mutants caught for each
case example over the test suites

Table 4 illustrates the fault detection capabilities
of each test case within a test suite. It highlights
that the average percentage of mutants each test
case could identify as faulty was below 10%. This
indicates that individual test cases are significantly
less effective in revealing faults compared to the

Main causes of missing errors during software testing 95

collective detection rate of the test suites.
Additionally, the test cases within the MC/DC test
suite exhibited slightly better error detection rate
than those within the Condition or Decision test
suites. While the average error detection capability
of the test cases is quite low, there exist individual
test cases with significantly superior error
detection performance. Fig 2 demonstrates the
number of mutants detected by each test case,
revealing considerable variation in their
error-catching abilities. As shown in Fig 2, in the
Infusion, more than 50 test cases failed to detect
any mutants, whereas one test case detected 79
mutants. In the Alarm, some test cases caught
only 2 mutants, while another managed to detect
47 mutants. Similarly, in the Microwave, while
some test cases caught 10 mutants, another was
able to detect as many as 84 mutants. This
indicates a wide disparity in performance among
individual test cases within the same test suites.

Condition
coverage

Decision
coverage

MC/DC
coverage

Infusion 3.7% 3.9% 4.2%
Alarm 3.2% 2.9% 3.2%

Microwave 9.4% 9.6% 10.0%

Table 4. Average percentage of mutants detected
by each test case in every given case example

Table 5 shows the average percentage of
mutants caught by the test cases by mutant type.
The types of mutants most frequently caught vary
by case example. For instance, in the Infusion,
relational operator faults were the most frequently
detected, while in Alarm, literal faults
predominated, and in Microwave, relational
operator faults were again most prevalent.
Although the most commonly caught mutant type
differs across case examples, within each case
example there is a significant disparity between the
most and least caught mutant types. In Infusion,
the ratio between the most and least caught mutant
types is approximately 3.4 times; in Alarm, it is 3
times; and in Microwave, it reaches 3.7 times. This

highlights substantial variations in detection
effectiveness within individual case examples.

Fig. 2. Number of mutants revealed by the number

of test cases for each case example

Logical
operator

Arithmetic
operator

Relational
operator

Literal
fault

Infusion 3.6% 1.5% 5.7% 5.1%
Alarm 2.6% 1.5% 3.7% 4.5%

Microwave 7.6% 15.4% 11.5% 4.2%

Table 5. Average percentage of mutants caught
for each case example over mutant types

Logical
operator

Arithmetic
operator

Relational
operator

Literal
fault

Infusion
(269)

67
(24.9%)

74
(27.5%)

61
(22.7%)

67
(24.9%)

Alarm
(268)

57
(21.3%)

81
(30.2%)

67
(25%)

63
23.5%)

Microwave
(225)

52
(21.3%)

59
(26.2%)

45
(20%)

69
(23.5%)

Table 6. Number of mutants not caught by any
test case

96 Journal of The Korea Society of Computer and Information

Fig. 3. Distribution of number of mutants caught

and number of test cases

Table 6 provides another insight about the
error-revealing characteristics of mutant types.
The table shows the number of mutants that were
not caught by any test cases. It is interesting that
over 50% of the mutants were not caught by any
test cases regardless of their coverage criteria. Fig
3 plots the distribution of the number of mutants
caught and number of test cases. As seen in Fig 3,
while some mutants are caught by a large number
of test cases, others are caught by only a few.
This issue will be further discussed in the

Implications section.
Table 7 presents the underlying causes for

errors not detected in our study. Within the
various case examples, the predominant factor for
missing errors is a failure in reachability,
accounting for approximately 50% of all
undetected errors. Subsequent prevalent causes
vary by case examples; however, masking by
relational operators consistently exerts a
significant influence on propagation failures
across all cases.

Table 8 delineates the relationship between the
causes of undetected errors and the test suite
coverage criteria. Notably, the MC/DC test suite,
which adheres to the most stringent coverage
criteria, exhibits the highest incidence of
reachability failures. While this will be further
addressed in the Implications section, it can be
observed that the MC/DC test cases frequently
miss errors in IF-then-else statements. For other
types of missing errors, no significant differences
were observed across different coverage criteria.

Table 9 presents the causes of errors not
detected in relation to the types of mutants. A
notable observation is that literal mutants
consistently show a higher incidence of
reachability failures across all case examples. This
is likely because the location of literal faults is
predominantly within If-then-else statements,
which were not executed. Infection failures for
literal mutants are uniformly 0% across all cases,
suggesting that if a literal fault is executed, it
invariably transitions the software to an erroneous
state. Moreover, logical and relational operator
faults exhibit a relatively higher rate of missing
errors due to infection failures. This indicates that

Reachability
failure

Infection
failure

Propagation failure
LOM ROM TM AOM

Infusion 48.2% 1.4% 2.3% 24.2% 23.9% 0%
Alarm 49.3% 11.1% 1.4% 30.6% 7.0% 0.4%

Microwave 57.0% 22.7% 2.1% 8.2% 2.4% 7.6%

Table 7. Causes of missing errors for the case examples (LOM: logical operator masking, ROM: relational
operator masking, TM: temporal masking, AOM: arithmetic operator masking)

Main causes of missing errors during software testing 97

even if these operators are replaced by others, the
output may not change depending on the input,
meaning that errors can remain masked. For
example, if the expression "A and B" is altered to
"A or B," the output remains unchanged when both
A and B are either true or false, hence masking
the error.

2. Implications
The experiment in this study reveals several

insights about factors that influence test
effectiveness as follows.

2.1 Most influential factor for missing errors
As indicated in Table 7, it is very interesting

that over 50% of the errors disappear due to
reachability failure regardless of the coverage
criteria. This is a counter-intuitive result from two
perspectives. First, much research has attempted

to generate productive test cases to enforce test
cases to comb every program structure under
test. However, our results show that a significant
number of errors are not propagated to a further
program construct due to not being chosen from
the “If C then S1 else S2” construct. Second, we
believe the test suite with more rigorous coverage
criterion will be superior to overcome the masking
effect of a program construct. As noted in Table
8, however, the MC/DC test suite shows less
capability to cope with the masking effect of the
“If C then S1 else S2” construct. The analysis of
the source code from the case examples reveals
that they were initially created using a graphical
tool called SCADE, and then mechanically
translated into the Lustre language by a compiler.
The source code heavily utilizes nested
If-then-else statements, where a then or else
clause contains another If-then-else statement,

Coverage
Criteria

Reachability
failure

Infection
failure

Propagation failure
LOM ROM TM AOM

Infusion
Condition 41.4% 1.7% 2.2% 24% 30.6% 0%
Decision 38.5% 1.4% 2.4% 24.2% 33.5% 0%
MC/DC 57.7% 1.2% 2.4% 24.2% 14.6% 0%

Alarm
Condition 49.4% 11.3% 1.4% 30.2% 7.1% 0.4%
Decision 47.5% 11.4% 1.3% 31.3% 8.0% 0.5%
MC/DC 50.8% 10.7% 1.4% 30.5% 6.2% 0.4%

Microwave
Condition 55.8% 23.0% 3.0% 8.6% 2.6% 7.0%
Decision 57.1% 22.7% 1.4% 8.3% 1.8% 8.8%
MC/DC 58.1% 22.5% 1.5% 7.7% 2.6% 7.6%

Table 8. Cause of missing errors for the case examples by coverage criteria (LOM: logical operator
masking, ROM: relational operator masking, TM: temporal masking, AOM: arithmetic operator masking)

Mutant
type

Reachability
failure

Infection
failure

Propagation failure
LOM ROM TM AOM

Infusion

Logical 48.0% 7.4% 3.2% 13.5% 27.8% 0%
Arithmetic 37.4% 0% 1.8% 39.6% 21.3% 0%

Literal 53.3% 0% 1.9% 21.5% 23.3% 0%
Relational 46.6% 4.6% 4.5% 17.0% 27.3% 0%

Alarm

Logical 50.9% 24.5% 0.8% 13.3% 10.5% 0%
Arithmetic 44.6% 3.7% 1.6% 44.1% 4.8% 1.2%

Literal 52.9% 0% 0.9% 41.0% 4.8% 0%
Relational 51.8% 19.8% 2.1% 17.1% 9.2% 0%

Microwave

Logical 53.8% 33.7% 6.5% 2.9% 1.1% 2.0%
Arithmetic 56.6% 27.7% 0.9% 6.1% 0.7% 8.1%

Literal 61.7% 0% 0% 15.6% 1.6% 21.2%
Relational 56.2% 26.6% 1.4% 8.6% 5.5% 1.8%

Table 9. Cause of missing errors for the case by mutant type (LOM: logical operator masking, ROM:
relational operator masking, TM: temporal masking, AOM: arithmetic operator masking)

98 Journal of The Korea Society of Computer and Information

often nested dozens of times. Even the most
robust MC/DC test suites ensure only that each
individual If-then-else statement executes both
then and else clauses but do not guarantee the
execution of all embedded statements within
nested structures. This is identified as a
contributing factor to the problem. Specifically,
when If-then-else statements are nested, there are
segments that the MC/DC test suite cannot
execute. With increased nesting, the unexecuted
segments become more prevalent. Developing a
test suite that ensures the execution of every
decision in such nested If-then-else statements
will be further research topic.

2.2 Least influential factor for missing errors
As indicated in Table 7, logical operator

masking and arithmetic operator masking has the
least influence on missing errors during testing.
This is also a somewhat counter-intuitive result to
the most common belief. The chance of errors
being masked in a logical operator is 50%. Thus,
we expect that the logical operator will be an
influential factor in error masking. However, our
experiment showed that a logical operator has a
much lower impact on error masking than that of
a relational operator and temporal masking.

2.3 Critical test cases
As shown in Table 4, the fault-finding capability

of most individual test cases is very disappointing.
Among 400 mutants, the average percentage of
mutants that the individual test case caught was
below 10%. More surprisingly, among the 262 test
cases in the Infusion case example, 52 test cases
did not catch any mutant, as shown in Fig 1.
However, the other single test case caught 79
mutants in the same case example. We call this
exceedingly productive test case a critical test
case. The other case examples include a test case
that caught 47 mutants in the Alarm case example
and a test case that caught 84 mutants in the
Microwave case example. Including a critical test

case in the test suite can significantly affect the
fault-finding capability of test suites. If we can
generate as many critical test cases as possible,
the testing efficiency will be further enhanced.
However, there is still little understanding on what
makes a critical test case and how.

2.4 Pervasive vs. insulant mutant
As shown in Tables 5 and 6, some mutants are

very insulant to propagate errors to other
constructs of the program. For example, the
Infusion case example has 269 mutants that were
not caught by any test cases. The errors in these
mutants are very difficult to find. On the other
hand, some mutants are very pervasive in
propagating errors to other constructs of the
program. As an example, four mutants in Infusion
were caught by 206 test cases. Further research
should focus on what makes a mutant pervasive
or insulant in propagating errors in the software.

3. Threats to Validity
l Mutant generation: We generate four different

fault type to simulate the programmers’ faults
during programming. The faults generated
were just a replacement of an operator or
literal. This simple fault scheme does not fit
with programmers’ real faults such as
replacing variables or omitting instructions.
The reason we use this restricted fault type is
due to the limitation of our tool. If the
program structure of mutants is far different
from the original program (oracle), comparing
variables between the oracle and mutant
becomes impossible or much more
challenging. However, we believe that the
causes of missing errors are similar to our
results when even complicated faults are
used. This is because the missing errors due
to reachability failure or propagation failure
will be equally applied to complicated faults.

l Test suite coverage: We generate a test suite
using the open source program released by

Main causes of missing errors during software testing 99

Gregory Gay, Assistant Professor in the
Department of Computer Science &
Engineering, at the University of South
Carolina. However, we are not sure if the
generated test suite fully achieves the
intended coverage criteria. Depending on the
program structure, it is not possible to
generate a test suite to satisfy a certain
coverage criteria. Thus, the test suite
generated in this study may not fully achieve
the intended coverage criteria. Nevertheless,
the main purpose of this study is not to
investigate the quality of the test suite, but to
investigate the characteristics of error
propagation and masking. Thus, even with
the current test suite, the contribution of this
study will not be compromised.

l Language choice: We used Lustre as the basic
language for the experiments and analysis.
Although Lustre is not a popular language
compared to more common languages, it has
a similar structure to systems written in C or
C++. There are also translation tools from
Lustre program to C or C++ program. Thus,
we believe our results are also applicable to
programs written in those languages.

V. Conclusions

In this study, we examine the cause of missing
errors during testing. The experimental results
indicate that more than 50% of the missing errors
occur because they do not have a chance to
execute. If an error is not executed, it cannot
further propagate to other places. Relational
operator has a relatively higher impact on error
masking. In contrast, logical operator and
arithmetic operator have a very small impact on
error masking. This finding suggests that much
work remains to be done to determine a way to
execute programs more thoroughly and
elaborately.

We also found that a large portion of test cases
showed a very poor capability to catch errors in
mutants while a few test cases showed a very
impressive capability to catch these errors. In
addition, some mutants are very pervasive in
propagating errors while others were very insolent
to transmit errors. Further research is needed to
address these findings to seek answers on what
causes these differences.

ACKNOWLEDGEMENT

This work was supported by the National
Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIP;
Ministry of Science, ICT & Future Planning) (No.
2018R1D1A1B07050181).

REFERENCES

[1] G. J. Myers, “Art of Software Testing”, John Wiley & Sons,
Inc., New York, NY, 1979

[2] G. Gay, M. Staats, M. Whalen, and M. Heimdahl, “Automated
oracle data selection support,” IEEE Transactions on Software
Engineering, 2015. DOI: 10.1109/TSE.2015.2436920

[3] E. Barr, M. Harman, P. McMinn et al., "The oracle problem
in software testing: a survey", IEEE Trans. Softw. Eng., vol. 41,
pp. 507-525, 2015 DOI: 10.1109/TSE.2014.2372785

[4] R. A. P. Oliveira, U. Kanewala, and P. A. Nardi. “Automated
test oracles: State of the art, taxonomies, and trends”. Advances
in Computers, 95:113–199, 2015. DOI: 10.1016/B978-0-12-8001
60-8.00003-6

[5] G. Gay, M. Staats, M. Whalen, and M. Heimdahl, “The risks
of coverage-directed test case generation,” IEEE Transactions on
Software Engineering, vol. 41, no. 8, pp. 803–819, 2015. DOI:
10.1109/TSE.2015.2421011

[6] S. Rayadurgam and M. P. E. Heimdahl, “Coverage based test-case
generation using model checkers,” in Proceedings of the Eighth
Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, 2001, pp. 83–91. DOI:
10.1109/ECBS.2001.922409

[7] R. A. DeMillo and J. Offutt. “Constraint-based automatic test
data generation. IEEE Transaction on Software Engineering,

100 Journal of The Korea Society of Computer and Information

17(9):900–910, September 1991.
[8] N. Li and J. Offutt. “Test Oracle Strategies for Model-Based

Testing”. IEEE Transactions on Software Engineering, January
2016.

[9] L. J. Morell. “A theory of error-based testing”. IEEE Transactions
on Software Engineering, 16(8):844–857, August 1990.

[10] J. Offutt. Automatic Test Data Generation. PhD thesis, Georgia
Institute of Technology, Atlanta, GA, USA, 1988.

[11] N. Halbwachs, L. Fabienne, and R. Christophe. "Programming
and verifying real-time systems by means of the synchronous
data-flow language LUSTRE." IEEE transactions on software
engineering Vol. 18, No. 9, 1992.

[12] N. Halbwachs et al. “The Synchronous Data Flow Programming
Language LUSTRE.” In Proc. IEEE Vol. 79, No. 9, 1991.

[13] M. Whalen, G. Gay, D. You, M. P. E. Heimdahl, and M. Staats,
“Observable modified condition/decision coverage,” in
Proceedings of the 35th Internationa l Conferenceon Software
Engineering, 2013, pp.102–111. DOI: 10.1109/ICSE.2013.660
6556

[14] J. L. Colaço, B. Pagano and M. Pouzet, "SCADE 6: A formal
language for embedded critical software development (invited
paper)," 2017 International Symposium on Theoretical Aspects
of Software Engineering (TASE), 2017.

[15] J. J. Chilenski and S. P. Miller, “Applicability of modified
condition/decision coverage to software testing,” Software
Engineering Journal, vol. 9, no. 5, pp. 193–200, 1994. DOI:
10.1049/sej.1994.0025

[16] M. Pezzè and M. Young, “Software Testing and Analysis:
Process, Principles, and Techniques.” Wiley, 2008.

[17] Y. Meng, G. Gay and M. Whalen, “Ensuring the Observability
of Structural Test Obligations”, IEEE Transactions on Software
Engineering, Vol 46, Issue 7, 2018.

[18] T. Goradia, "Dynamic Impact Analysis: A Cost-Effective
Technique to Enforce Error-Propagation", Proc. ACM Int'l
Symp. Software Testing and Analysis, pp. 171181, June 1993.
DOI: 10.1145/174146.154269

[19] J. Voas, "PIE: A Dynamic Failure-Based Technique", IEEE
Trans. Software Eng., vol. 18, no. 8, pp. 717727, Aug. 1992.
DOI: 10.1109/32.153381

[20] W. Abdelmoez, D.M. Nassar, M. Shereshevsky, N. Gradetsky,
R. Gunnalan,H.H. Ammar, Yu Bo, A Mili, "Error propagation
in software architectures", Proceedings of International
Symposium on Software Metrics, pp. 384-393, 2004. DOI:
10.1109/METRIC.2004.1357923

[21] G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “An
empirical study on failed error propagation in java programs
with real faults,” 2020

[22] A. Chan, S. Winter, H. Saissi, K. Pattabiraman, and N. Suri,
“Ipa: Error propagation analysis of multi-threaded programs

using likely invariants,” in 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST), pp.
184–195, 2017.

[23] A. Murugesan, M. Whalen, S. Rayadurgam and M. P. E.
Heildahl, “ Compositional Verification of a Medical Device
System”, Proceedings of the 2013 ACM SIGAda Annual
Conference on High Integrity Language Technology, 2013.

Authors
Young-Mi Kim received her M.S. degree
from the Department of Computer Science
at Korea University in 2001. Young-Mi Kim
is currently pursuing a Ph.D. degree with
the Department of Computer & Radio

Communication Engineering at Korea University, Seoul,
Korea. Her research interests include formal methods,
networks, SDN security, and software testing.

Myung-Hwan Park received the B.S. degree
from Republic of Korea Air Force Academy
in 1994, the M.S. degree from Korea
University in 2000, and the Ph.D. degree
from University of Minnesota in 2010, all

majoring Computer Science. Dr. Park is currently an
associate professor of computer science at Republic of
Korea Air Force Academy, South Korea. His research
interests include software testing and safety critical system.

