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Introduction

Viruses within the family Rhabdoviridae are re-
sponsible for considerable morbidity and mortality in 
vertebrates (Walker and Winton, 2010). In fish, sev-
eral rhabdoviruses, such as spring viremia carp virus 
(SVCV), infectious hematopoietic necrosis virus (IHNV), 
and viral hemorrhagic septicemia virus (VHSV), have 
been designated as notifying pathogens by the World 
Organization for Animal Health (WOAH). Among 
them, SVCV lacks the NV gene in its genome, dis-
tinguishing it from IHNV and VHSV (Walker et al., 

2021). SVCV belongs to the genus Sprivivirus and 
has five structural genes encoding nucleoprotein (N), 
phosphoprotein (P), matrix protein (M), glycoprotein 
(G), and RNA-dependent RNA polymerase (L) (Ahne 
et al., 2002; Walker et al., 2022). SVCV has been 
recognized as the most lethal virus in cyprinid fish, 
especially common carp (Fijan, 1999), and has been 
classified as a notifiable disease in many countries, 
mandating the culling of infected and at-risk fish pop-
ulations (Baudouy et al., 1980; Shao and Zhao, 2017). 
Although there have been reports on the prophylactic 
measures against SVCV (Ashraf et al., 2016), espe-
cially, the high effectiveness of DNA vaccines con-
taining an SVCV G protein expression cassette 
(Embregts et al., 2017; Emmenegger & Kurath, 2008; 
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Kanellos et al., 2006; Zhao et al., 2022), no commer-
cial vaccine has been developed to date. 

In a previous study, we generated a chimeric re-
combinant snakehead rhabdovirus (SHRV) by replac-
ing the SHRV G gene ORF in the genome with the 
SVCV G gene ORF (rSHRV-Gsvcv) and analyzed its 
replication characteristics at different temperatures 
(Lee et al., 2021). SHRV, belonging to the genus 
Novirhabdovirus, was initially isolated from snake-
head fish (Ophicephalus striatus) in Thailand (Watta-
navijarn et al., 1986). Limited information exists re-
garding the virulence of SHRV in fish, with only a 
few studies reporting mortalities in adult zebrafish 
(Danio rerio) following intraperitoneal injection of 
SHRV (Alonso et al., 2004; Phelan et al., 2005). In 
the present study, we observed no mortality in adult 
zebrafish challenged with 1×104 pfu/fish of either 
wild-type SHRV or rSHRV-Gsvcv, whereas 100% 
mortality was observed following SVCV infection. 

Live vaccines based on attenuated viruses offer ad-
vantages over inactivated or subunit vaccines due to 
their ability to induce robust protective immune re-
sponses similar to those elicited by natural viral in-
fections (Choi et al., 2019; Kim and Kim, 2012; Kim 
et al., 2022). Non-virulent or weak-virulent viruses 
can be used as a delivery tool for antigens of virulent 
pathogens by generating chimeric viruses expressing 
heterologous antigens. Given the absence of mortality 
observed following rSHRV-Gsvcv infection, this study 
evaluated the vaccine potential of chimeric rSHRV- 
Gsvcv against SVCV through zebrafish immunization.

Materials and Methods

Cells and viruses

Epithelioma papulosum cyprini (EPC) cells were 
grown in Leibovitz medium (L-15, Sigma) supple-
mented with 10% fetal bovine serum (FBS, Welgene) 
and 1% penicillin-streptomycin (Welgene) at 28°C. 
SHRV (ATCC-VR1386), rSHRV-wild, rSHRV-Gsvcv 
(Lee et al., 2021), and wild-type SVCV (K1 strain 

isolated from common carp in the year 2010 in Korea) 
were propagated in EPC cells in L-15 with 2% FBS 
and antibiotics at 28°C. Viral stocks were prepared 
by infecting a monolayer of EPC cells with the virus, 
followed by centrifugation of the supernatant when 
the extensive cytopathic effect (CPE) was observed. 
After filtration through a 0.45 µm pore size filter, the 
supernatant was aliquoted and stored at -80°C until 
further use.  

In vivo virulence

Adult zebrafish (average weight 0.3 g) were ran-
domly divided into 8 groups (16 fish/group) and accli-
mated at 15°C (4 groups) and 20°C (4 groups) for 
one week. Prior to virus challenge, fish were anes-
thetized with 100 ppm MS-222 (Sigma) and injected 
intramuscularly with L-15 alone (control group), 
rSHRV-wild, rSHRV-Gsvcv, or wild-type SVCV at 
1×104 PFU/20 μl/fish. Mortalities were recorded daily 
for 21 days post-injection.

Quantitative Real-Time PCR (qRT-PCR)

Tissue samples from zebrafish (whole body except 
for the head and caudal fin) were homogenized with 
RiboEx (GeneAll, Korea) using a Tissue Lyser II 
(Qiagen), and then total RNA was extracted using a 
Hybrid-R kit (GeneAll). Subsequently, 1 μg of RNA 
was reverse transcribed into cDNA using M-MLV re-
verse transcriptase containing random hexamer (El-
pisbio, Korea). The resulting cDNA was used as a 
template for quantitative RT-qPCR. Each RT-qPCR 
reaction was conducted in a total volume of 20 μl 
containing SYBR green PCR master mix (Enzyno-
mics, Korea), 1 μl of primer (each primer/5 pmol), 
5 μl of template cDNA, and 3 μl of RNase-free water. 
RT-qPCR was carried out using a Light Cycler 480 
(Roche) with the following protocol: initial denatura-
tion at 95°C for 15 min followed by 40 cycles of 
denaturation at 95°C for 10 sec, annealing at 60°C for 
10 sec, and extension at 72°C for 20 sec. Primer sets 
used in the RT-qPCR analysis are listed in Table 1.
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Immunization and challenge

1) Experiment I
Zebrafish were divided into two groups with 2 rep-

licates (15 fish/tank) and intramuscularly injected 
with L-15 alone (control group) or 1×104 PFU/20 μ
l/fish of rSHRV-Gsvcv. At 5 weeks post-immuniza-
tion, fish were challenged with 1×103 PFU/fish of 
wild-type SVCV. The water temperature was main-
tained at 15 °C throughout the experiment, and mor-
tality was monitored for 15 days.

2) Experiment II
Zebrafish were divided into two groups with 2 rep-

licates (15 fish/tank) and intramuscularly injected 
with L-15 alone (control group) or 1×103 PFU/20 μ
l/fish of rSHRV-Gsvcv. At 4 weeks post-immuniza-
tion, fish were challenged with 1×102 PFU/fish of 
wild-type SVCV. The water temperature was main-
tained at 15 °C throughout the experiment, and mor-
tality was monitored for 21 days.

3) Experiment III
Zebrafish were divided into three groups with 2 

replicates (10 fish/tank) and intramuscularly injected 
with L-15 alone (control group), 1×103 PFU/20 μl 
/fish of rSHRV-wild, or 1×103 PFU/20 μl/fish of 
rSHRV-Gsvcv. At 4 weeks post-immunization, fish 
were challenged with 1×103 PFU/fish of wild-type 
SVCV. The water temperature was maintained at 15 
°C throughout the experiment, and mortality was 
monitored for 15 days.

Statistical analysis

Statistical analysis was performed using GraphPad 
Prism (GraphPad Software, USA). Viral titers were 
analyzed using one-way ANOVA followed by Tukey 
HSD post-hoc test, with p < 0.05 was considered stat-
istically significant. Survival kinetics data were ana-
lyzed using Kaplan-Meier survival analysis, and 
Log-rank tests (Mantel-Cox) were used to evaluate 
statistical significance (p < 0.05).

Results

in vivo virulence and viral titer

The virulence of rSHRV-wild, rSHRV-Gsvcv, and 
wild-type SVCV in zebrafish was assessed at 15°C 
and 20°C. Wild-type SVCV caused 100% mortality 
at both temperatures, whereas neither rSHRV nor 
rSHRV-Gsvcv induced mortality at either temperature 
(Fig. 1a). 

On the final day of the challenge experiment, the 
presence of each virus in zebrafish was determined 
by quantitative RT-qPCR using samples from three 
randomly selected fish per group. High-titer SVCV 
was detected in dead fish at both 15°C and 20°C (6.7 
×106 copies/mg and 6.7×106 copies/mg, respectively). 
As for rSHRV-wild and rSHRV-Gsvcv, low-titer were 
detected in surviving fish at both temperatures (8.2× 
103 copies/mg, 5×103 copies/mg, respectively at 15°C 
and 2×103 copies/mg, 3×103 copies/mg, respectively 
at 20°C) (Fig. 1b). The titer of rSHRV-wild at 15°C 
(8.2×103 copies/mg) was significantly higher than that 
at 20°C (2×103 copies/mg) (Fig. 1b).

Immunization and challenge

In experiment I, fish immunized with 1×104 pfu/ 
fish of rSHRV-Gsvcv exhibited significantly higher 
survival rates following SVCV challenge (Fig. 2a). 
In experiment II, a tenfold lower titer of rSHRV- 
Gsvcv (1×103 pfu/fish) also led to significantly higher 
survival rates (Fig. 2b). In experiment III, fish immu-
nized with 1×103 pfu/fish of rSHRV-wild showed 

Table 1. Primers used for real-time qPCR 

Primer name Sequence (5′ → 3′)
For SHRV quantification
 SHRV_qPCR_F
 SHRV_qPCR_R

CAGAACTTCCCCCCTAACG
CCTCCTGAAGGTTCTCTTGTG

For SVCV quantification
 SVCV_qPCR_F
 SVCV_qPCR_R

ATCAGGCCGATTATCCTTCCA
AGATAAGCATTCACATGCTGTAT
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90-100% mortality by SVCV challenge, which was 
similar to the mortality of the control group (100%), 
whereas fish immunized with 1×103 pfu/fish of 
rSHRV-Gsvcv showed 10-20% mortality (Fig. 2c).

Discussion

Zebrafish has been used as an in vivo model fish 
on many occasions involving the study of rhabdovi-
ruses, including SVCV and SHRV (Sanders et al., 
2003). In the present study, SVCV induced high mor-
tality in zebrafish, whereas rSHRV-Gsvcv did not 
lead to infection-mediated mortality. The glycoprotein 

of rhabdoviruses plays a crucial role in viral infection, 
which has led to the development of glycoprotein- 
based vaccines (Kim et al., 2023; Martinez-Lopez et 
al., 2014; Puente-Marin et al., 2018). In our inves-
tigation, fish immunized with rSHRV-Gsvcv exhi-
bited over 80% survival rates, contrasting with fish 
immunized with rSHRV, which experienced 90-100% 
mortality. This suggests that the SVCV G gene in 
the chimeric virus was the primary factor contributing 
to the high protection.  

Previously, Emmenegger et al. (2018) assessed the 
in vivo virulence of a chimeric rIHNV-Gsvcv to rain-
bow trout (Oncorhynchus mykiss), common carp 

Fig. 1. Virulence of chimeric rSHRV-Gsvcv in zebrafish at 15°C and 20°C. (a) Cumulative mortality of zebrafish 
injected with control viruses (wild-type SVCV, wtSVCV; rSHRV-wild, rSHRV) and the chimeric rSHRV-Gsvcv. 
(b) Quantification of the chimeric rSHRV-Gsvcv from zebrafish in comparison with wild-type SVCV (wtSVCV) 
and rSHRV-wild (rSHRV). The asterisk represents statistically significant at p < 0.05.
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(Cyprinus carpio carpio), and koi (Cyprinus carpio 
koi) that were acclimated to 10°C. They found that 
rIHNV-Gsvcv induced high mortality only in rainbow 
trout but did not induce mortality in common carp 

and koi. Furthermore, koi that survived rIHNV-Gsvcv 
infection exhibited strong resistance against virulent 
SVCV infection, suggesting the possible use of rIHNV- 
Gsvcv as a prophylactic vaccine. However, the high 

a

b

c

Fig. 2. Protective effect of chimeric rSHRV-Gsvcv against SVCV infection. (a) and (b) represent the survival rate 
obtained from experiment I and experiment II, respectively, showing the safety and protective effect of the chimeric 
virus depending on the dose. (c) represents the survival rate of the chimeric rSHRV-Gsvcv compared to a control 
virus rSHRV-wild. The asterisk represents statistically significant at p < 0.05.



22 Mariem Bessaid, Kyung Min Lee, Jae Young Kim and Ki Hong Kim

virulence of the IHNV-based chimeric virus in rain-
bow trout may pose challenges in using chimeric 
IHNVs as live vaccines against heterologous patho-
gens. 

Although reports on the virulence of SHRV are 
limited (Phelan et al., 2005), in our preliminary ex-
periments, we observed no mortality in carp, koi, and 
even snakehead fingerlings by SHRV infection. 
Therefore, SHRV is considered safer than other fish 
rhabdoviruses as an antigen-delivery tool in fish 
through the generation of recombinant chimeric 
viruses. Additionally, as SHRV can replicate in a 
wide temperature range, its usage can be more versa-
tile compared to other fish novirhabdoviruses that rep-
licate only at low temperatures. Further investigation 
into possible host ranges is necessary to expand the 
availability of chimeric SHRVs. 

Despite the high protectivity observed in the immu-
nization experiments in this study, further studies are 
needed to elucidate the immunological phenomena in-
duced by the chimeric SHRV. Moreover, as the pres-
ent chimeric SHRV retains replicative ability in host 
cells, the possibility of inducing pathological symp-
toms in infected fish cannot be disregarded. The sig-
nificantly higher titer of rSHRV-wild at 15°C com-
pared to 20°C suggests that reduced immunity of ze-
brafish due to low temperature may facilitate better 
replication of SHRV, despite its optimal temperature 
being over 20° C. Therefore, safer forms such as sin-
gle-cycle chimeric SHRVs and alternative admin-
istration routes should be considered to enhance the 
likelihood of obtaining approval as practical vaccines. 
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