DOI QR코드

DOI QR Code

Stiffness Characterization of Biopolymer-treated Sandy Soils using Shear Wave Velocity

전단파속도를 이용한 바이오폴리머 처리 사질토의 강성특성 평가

  • Cho, Hyunmuk (Dept. of Civil & Environmental Engineering, Gachon Univ.) ;
  • Jun, Minu (Dept. of Civil & Environmental Engineering, Gachon Univ.) ;
  • Lee, Eun Sang (Dept. of Civil & Environmental Engineering, Gachon Univ.) ;
  • Hong, Won-Teak (Dept. of Civil & Environmental Engineering, Gachon Univ.)
  • 조현묵 (가천대학교 토목환경공학과 ) ;
  • 전민우 (가천대학교 토목환경공학과 ) ;
  • 이은상 (가천대학교 토목환경공학과 ) ;
  • 홍원택 (가천대학교 토목환경공학과 )
  • Received : 2024.05.10
  • Accepted : 2024.06.09
  • Published : 2024.06.30

Abstract

Xanthan gum biopolymer is an ecofriendly ground stabilizer that maintains stability in a wide range of temperatures and pH values. The binding effect of sandy soil particles realized by injecting xanthan gum biopolymer is dependent on the xanthan gum matrix, which is formed during the drying process; thus a study on the effects of the drying process of the xanthan gum solution on the changes in stiffness characteristics of sandy soil is required. In this study, shear wave velocity and electrical resistivity were monitored in sandy soil specimens saturated with biopolymer solutions of different gravimetric concentrations to investigate the improvement effects of biopolymer-treated sandy soils with the drying process. The experimental results reveal that both shear wave velocity and electrical resistivity increase during drying process. The results demonstrate the stiffness improvement effects of biopolymer-treated sandy soils. In addition, a higher stiffness improvement effect was monitored in the biopolymer-treated sandy soils with a higher gravimetric concentration. The results of this study may be used to estimate the stiffness improvement effects of sandy soils treated with biopolymer solutions with the drying process.

잔탄검 바이오폴리머는 대표적인 친환경 지반안정제로서, 넓은 범위의 온도와 pH에서 높은 안정성을 보이는 장점이 있다. 사질토 지반에 대한 잔탄검 바이오폴리머 적용 시 흙 입자 결합력 증대효과는 잔탄검 매트릭스의 건조과정에 의존하므로, 잔탄검 바이오폴리머 수용액의 건조과정에 따른 사질토 전단강성 증대효과에 대한 연구가 요구된다. 본 연구에서는 잔탄검 바이오폴리머 주입에 의한 사질토의 전단강성 개선효과를 평가하고자, 농도가 다른 잔탄검 바이오폴리머 수용액을 주입한 주문진 표준사에 대하여 건조 경과에 따른 전단파속도를 측정하였으며, 건조도의 정량적 평가를 위하여 전기비저항 측정이 병행되었다. 건조시간 경과에 따라 전단파속도 및 전기비저항 모두 증가하는 양상을 보였으며, 이를 통하여 건조과정에 따른 바이오폴리머 혼합토의 전단강성 증대효과를 확인하였다. 또한, 바이오폴리머 농도에 따른 전단파속도 측정 결과, 초기 농도가 높을수록 건조과정에 따라 높은 전단강성 증대효과를 나타내었다. 본 연구의 결과는 바이오폴리머 수용액 주입에 의한 사질토 지반의 전단강성 개량효과 예측에 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2022R1A4A3029737).

References

  1. Almajed, A., Lateef, M. A., Moghal, A. A. B., and Lemboye, K. (2021), "State-of-the-art Review of the Applicability and Challenges of Microbial-induced Calcite Precipitation (MICP) and Enzyme-induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications", Crystals, Vol.11, No.4, p.370. 
  2. Chang, I., Im, J., Prasidhi, A. K., and Cho, G. C. (2015), "Effects of Xanthan Gum Biopolymer on Soil Strengthening", Construction and Building Materials, Vol.74, pp.65-72.  https://doi.org/10.1016/j.conbuildmat.2014.10.026
  3. Chang, I., Im, J., and Cho, G. C. (2016), "Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-friendly and Sustainable Geotechnical Engineering", Sustainability, Vol.8, No.3, p.251. 
  4. Chen, C., Wu, L., Perdjon, M., Huang, X., and Peng, Y. (2019), "The Drying Effect on Xanthan Gum Biopolymer Treated Sandy Soil Shear Strength", Construction and Building Materials, Vol.197, pp.271-279.  https://doi.org/10.1016/j.conbuildmat.2018.11.120
  5. Hoang, N. Q., Kim, S. Y., and Lee, J. S. (2022), "Compressibility, Stiffness and Electrical Resistivity Characteristics of Sand-diatom Mixtures", Geotechnique, Vol.72, No.12, pp.1068-1081.  https://doi.org/10.1680/jgeot.20.P.136
  6. Hong, W. T., Lee, J. S., Lee, D., and Yoon, H. K. (2022), "Estimation of Bulk Electrical Conductivity in Saline Medium with Contaminated Lead Solution through TDR Coupled with Machine Learning", Process Safety and Environmental Protection, Vol.161, pp.58-66.  https://doi.org/10.1016/j.psep.2022.03.018
  7. Jung, S. H., Yoon, H. K., and Lee, J. S. (2015), "Effects of Temperature Compensation on Electrical Resistivity during Subsurface Characterization", Acta Geotechnica, Vol.10, pp.275-287.  https://doi.org/10.1007/s11440-014-0301-8
  8. Kim, Dong-Soo and Choo, Yun-Wook (2001), "Dynamic Deformation Characteristics of Cohesionless Soils in Korea Using Resonant Column Tests", Journal of the Korean Geotechnical Society, Vol.17, No.5, pp.115-128. 
  9. Kim, S. Y., Chun, J. K., Yeo, J. Y., and Lee, J. S. (2023), "Estimation of Soil Porosity in Mine Tailing Using Parameters from Instrumented Oedometer Test", Engineering Geology, Vol.317, 107065. 
  10. Kim, S. Y., Lee, J. S., Hoang, Q. N., and Park, J. (2022), "Effect of Ocean Environmental Particles on Compressibility, Electrical Resistivity, and Stiffness Characteristics of Mixtures", Engineering Geology, Vol.304, 106675. 
  11. Lee, C. H., Yoon, H. K., Truong, H. Q., Cho, T. H., and Lee, J. S. (2006), "Characteristics of Shear Wave Velocity as Stress-induced and Inherent Anisotropies", Journal of the Korean Geotechnical Society, Vol.22, No.11, pp.47-54.  https://doi.org/10.7843/KGS.2006.22.11.47
  12. Lee, C. H., Yoon, H. K., Lee, W. J., and Lee, J. S. (2008), "Elastic Wave Characteristics in Cemented Engineered Soils", Journal of the Korean Geotechnical Society, Vol.24, No.2, pp.87-97.  https://doi.org/10.7843/KGS.2008.24.2.87
  13. Lee, Jong-Sub and Lee, Changho (2006, May), "Principles and Considerations of Bender Element Tests", Journal of the Korean Geoenvironmental Society, Vol.22, No.5, pp.47-57. 
  14. Lee, S., Im, J., Cho, G. C., and Chang, I. (2019), "Laboratory Triaxial Test behavior of Xanthan Gum Biopolymer-treated Sands", Geomechanics and Engineering, Vol.17, No.5, pp.445-452.  https://doi.org/10.12989/GAE.2019.17.5.445
  15. Moghal, A. A. B. and Vydehi, K. V. (2021), "State-of-the-art Review on Efficacy of Xanthan Gum and Guar Gum Inclusion on the Engineering behavior of Soils", Innovative Infrastructure Solutions, Vol.6, pp.1-14.  https://doi.org/10.1007/s41062-020-00383-y
  16. Salas, D. A., Ramirez, A. D., Rodriguez, C. R., Petroche, D. M., Boero, A. J., and Duque-Rivera, J. (2016), "Environmental Impacts, Life Cycle Assessment and Potential Improvement Measures for Cement Production: A Literature Review", Journal of Cleaner Production, Vol.113, pp.114-122.  https://doi.org/10.1016/j.jclepro.2015.11.078
  17. Soldo, A., Miletic, M., and Auad, M. L. (2020), "Biopolymers as a Sustainable Solution for the Enhancement of Soil Mechanical Properties", Scientific Reports, Vol.10, No.1, pp.267. 
  18. Zhou, M., Wang, J., Cai, L., Fan, Y., and Zheng, Z. (2015), "Laboratory Investigations on Factors Affecting Soil Electrical Resistivity and the Measurement", IEEE Transactions on Industry Applications, Vol.51, No.6, pp.5358-5365. https://doi.org/10.1109/TIA.2015.2465931