DOI QR코드

DOI QR Code

치자, 녹차, 석류껍질을 활용한 박테리아 셀룰로오스 섬유소재의 염색성과 단백질 전처리의 영향

Dyeing Properties of Bacterial Cellulose Fabric using Gardenia Jasminoides, Green Tea, and Pomegranate Peel, and the Effects of Protein Pretreatment

  • 황예림 (숙명여자대학교 의류학과) ;
  • 김현진 (한국생산기술연구원 인간중심생산기술연구소 섬유솔루션 부문) ;
  • 김혜림 (숙명여자대학교 의류학과/숙명여자대학교 창의융합연구소)
  • Yerim Hwang (Dept. of Clothing and Textiles, Sookmyung Women's University) ;
  • Hyunjin Kim (Textile Innovation R&D Department, Smart Textronics Center, Korea Institute of Industrial Technology) ;
  • Hye Rim Kim (Dept. of Clothing and Textiles, Sookmyung Women's University/Research Institute for Creativity and Convergence, Sookmyung Women's University)
  • 투고 : 2023.12.29
  • 심사 : 2024.02.29
  • 발행 : 2024.06.30

초록

The aim of this study was to impart color to bacterial cellulose (BC) fabric using various natural plant-based dyes-namely, gardenia jasminoides, green tea, and pomegranate peel. A protein pretreatment was also applied to improve the BC fabric's dyeability and mechanical properties. The BC fabric's dyeing and mordanting conditions when using plant-based natural dyes were determined by changes in the K/S values. The dyeability of BC samples dyed with green tea or pomegranate peel improved when they were pretreated with soy protein isolate (SPI) prior to dyeing. Moreover, the SPI pretreatment was efficient in improving the BC fabric's tensile strength and flexibility. This study proposes a method for dyeing BC fabric that uses plant-based natural dyes and confirms the effects of the protein pretreatment on the fabric's dyeability and durability.

키워드

과제정보

본 논문은 석사학위 논문임.

참고문헌

  1. Abba, M., Ibrahim, Z., Chong, C. S., Zawawi, N. A., Kadir, M. R. A., Yusof, A. H. M., & Razak, S. I. A. (2019). Transdermal delivery of crocin using bacterial nanocellulose membrane. Fibers and Polymers, 20(10), 2025-2031. https://doi.org/10.1007/s12221-019-9076-8 
  2. Amorim, L. F. A., Fangueiro, R., & Gouveia, I. C. (2022). Characterization of bioactive colored materials produced from bacterial cellulose and bacterial pigments. Materials, 15(6), 2069. https://doi.org/10.3390/ma15062069 
  3. Bai, S. K. (2004). A study for dyeing properties of marigold on silk fabric. The Journal of Natural Sciences, 3(2), 309-316. 
  4. Castro, C., Zuluaga, R., Alvarez, C., Putaux, J.-L., Caro, G., Rojas, O. J., Mondragon, I., & Ganan, P. (2012). Bacterial cellulose produced by a new acid-resistant strain of gluconacetobacter genus. Carbohydrate Polymers, 89(4), 1033-1037. https://doi.org/10.1016/j.carbpol.2012.03.045 
  5. Chen, Y. M., Tsao, T. M., Liu, C. C., Huang, P. M., & Wang, M. K. (2010). Polymerization of catechin catalyzed by Mn-, Fe- and Al-oxides. Colloids and Surfaces, B: Biointerfaces, 81(1), 217-223. https://doi.org/10.1016/j.colsurfb.2010.07.012 
  6. Cho, A. R., Shin, Y. S., & Yoo, D. I. (2008). Hair-dyeing by using pomegranate hull extract. Textile Coloration and Finishing, 20(6), 42-50. https://doi.org/10.5764/TCF.2008.20.6.042 
  7. Cho, K. R. (2000). 천연염료와 염색 [Natural colorants and dyeing]. Hyungseul publishing. 
  8. Cho, S. S., Song, H. S., & Kim, B. H. (1998). The dyeability properties of some yellow natural dyes (I): Extracted from gardenia. Journal of the Korean Society of Dyers and Finishers, 10(1), 1-10. 
  9. Czaja, W. K., Young, D. J., Kawecki, M., & Brown, R. M. (2007). The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 8(1), 1-12. https://doi.org/10.1021/bm060620d 
  10. Da Silva Jr., C. J. G., de Amorim, J. D. P., de Medeiros, A. D. M., de Holanda Cavalcanti, A. K. L., do Nascimento, H. A., Henrique, M. A., Maranhao, L. J. C. N., Vinhas, G. M., Silva, K. K. O. S., Costa, A. F. S., & Sarubbo, L. A. (2022). Design of a naturally dyed and waterproof biotechnological leather from reconstituted cellulose. Journal of Functional Biomaterials, 13(2), 49. https://doi.org/10.3390/jfb13020049 
  11. Dai, S., Lian, Z., Qi, W., Chen, Y., Tong, X., Tian, T., Lyu, B., Wang, M., Wang, H., & Jiang, L. (2022). Non-covalent interaction of soy protein isolate and catechin: Mechanism and effects on protein conformation. Food Chemistry, 384, 132507. https://doi.org/10.1016/j.foodchem.2022.132507 
  12. Fan, H., Fu, G., Feng, S., He, X., Cai, W., & Wan, Y. (2023). Fabrication of casein-crocin nanocomplexes: Interaction mechanism, impact on stability and bioavailability of crocin. Food Hydrocolloids, 136, 108279. https://doi.org/10.1016/j.foodhyd.2022.108279 
  13. Fernandes, M., Souto, A. P., Dourado, F., & Gama, M. (2021). Application of bacterial cellulose in the textile and shoe industry: Development of biocomposites. Polysaccharides, 2(3), 566-581. https://doi.org/10.3390/polysaccharides2030034 
  14. Friesen, K., Chang, C., & Nickerson, M. (2015). Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: Mechanical, barrier and cross-linking properties. Food Chemistry, 172, 18-23. https://doi.org/10.1016/j.foodchem.2014.08.128 
  15. Gelin, K., Bodin, A., Gatenholm, P., Mihranyan, A., Edwards, K., & Stromme, M. (2007). Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer, 48(26), 7623-7631. https://doi.org/10.1016/j.polymer.2007.10.039 
  16. Hager, A., Vallons, K. J. R., & Arendt, E. K. (2012). Influence of gallic acid and tannic acid on the mechanical and barrier properties of wheat gluten films. Journal of Agricultural and Food Chemistry, 60(24), 6157-6163. https://doi.org/10.1021/jf300983m 
  17. Han, J., Shim, E., & Kim, H. R. (2019). Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Textile Research Journal, 89(6), 1094-1104. https://doi.org/10.1177/0040517518763989 
  18. Han, L., Peng, X., Cheng, Y., Zhu, Y., Huang, Y., Zhang, S., & Qi, B. (2023). Effects of catechin types found in tea polyphenols on the structural and functional properties of soybean protein isolate-catechin covalent complexes. Food Science & Technology, 173, 114336. https://doi.org/10.1016/j.lwt.2022.114336 
  19. Jia, Z., Zheng, M., Tao, F., Chen, W., Huang, G., & Jiang, J. (2016). Effect of covalent modification by (-)-epigallocatechin-3-gallate on physicochemical and functional properties of whey protein isolate. Food Science & Technology, 66, 305-310. https://doi.org/10.1016/j.lwt.2015.10.054 
  20. Kim, H. (2023). Development of flame-resistant bacterial cellulose as a sustainable leather substitute by using biomassderived compounds [Unpublished doctoral dissertation]. Sookmyung Women's University. 
  21. Kim, H., & Kim, H. R. (2022). Production of coffee-dyed bacterial cellulose as a bio-leather and using it as a dye adsorbent. PloS One, 17(3), e0265743. https://doi.org/10.1371/journal.pone.0265743 
  22. Kim, H., & Kim, H. R. (2023). Production of flame-resistant bacterial cellulose using whey protein isolate or casein via physical entrapment and crosslinking. Cellulose, 30(15), 9295-9330. https://doi.org/10.1007/s10570-023-05452-w 
  23. Kim, H., Song, J. E., & Kim, H. R. (2021a). Ex situ coloration of laccase-entrapped bacterial cellulose with natural phenolic dyes. Journal of the Korean Society of Clothing and Textiles, 45(5), 866-880. https://doi.org/10.5850/JKSCT.2021.45.5.866 
  24. Kim, H., Song, J. E., & Kim, H. R. (2021b). Comparative study on the physical entrapment of soy and mushroom proteins on the durability of bacterial cellulose bio-leather. Cellulose, 28(5), 3183-3200. https://doi.org/10.1007/s10570-021-03705-0 
  25. Kim, T., Son, S., Jung, J., Jang, K., Kwon, O., Choi, Y., & Jeong, Y.-H. (2008). Functional dyeing and finishing using catechins extracted from green tea (I): extraction optimization, stability, and content analysis of catechins. Textile Coloration and Finishing, 20(2), 75-82. http://dx.doi.org/10.5764/TCF.2008.20.2.075 
  26. Lee, J. Y., & Jang, J. D. (2019). Improving the dyeability of cotton fabric with caesalpinia sappan through pretreatment with gelatin. Fashion & Textile Research Journal, 21(4), 509-514. https://doi.org/10.5805/SFTI.2019.21.4.509 
  27. Lee, N.-R., Jeong, J.-H., Park, S.-B., Jeong, S.-Y., Hwang, D. -Y., Kim, H.-S., & Son, H.-J. (2011). Antimicrobial activity and coloration of environment-friendly biopolymer, bacterial cellulose. Journal of Environmental Science International, 20(7), 899-905. https://doi.org/10.5322/JES.2011.20.7.899 
  28. Liu, J., Lu, J., Kan, J., Wen, X., & Jin, C. (2014). Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. International Journal of Biological Macromolecules, 64, 76-83. https://doi.org/10.1016/j.ijbiomac.2013.11.028 
  29. Moghadam, M., Salami, M., Mohammadian, M., Khodadadi, M., & Emam-Djomeh, Z. (2020). Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocolloids, 104, 105735. https://doi.org/10.1016/j.foodhyd.2020.105735 
  30. Nam, J., Hyun, Y., Oh, S., Park, J., Jin, H., & Kwak, H. W. (2021). Effect of cross-linkable bacterial cellulose nanocrystals on the physicochemical properties of silk sericin films. Polymer Testing, 97, 107161. https://doi.org/10.1016/j.polymer testing.2021.107161 
  31. Park, K. S., Choi, I. R., & Bae, K. I. (2007). A study for natural dyeing textiles with bean-juice treatment method. Journal of the Korea Fashion & Costume Design Association, 9(2), 85-92. 
  32. Pisitsak, P., Hutakamol, J., Thongcharoen, R., Phokaew, P., Kanjanawan, K., & Saksaeng, N. (2016). Improving the dyeability of cotton with tannin-rich natural dye through pretreatment with whey protein isolate. Industrial Crops and Products, 79, 47-56. https://doi.org/10.1016/j.indcrop.2015.10.043 
  33. Rasmussen, C. J. (2008). Nutritional supplements for endurance athletes. In M. Greenwood, D. S. Kalman, & J. Antonio (Eds.), Nutritional supplements in sports and exercise (pp. 369-407). Humana Press. https://doi.org/10.1007/978-1-59745-231-1_11 
  34. Reiniati, I., Hrymak, A. N., & Margaritis, A. (2017). Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Critical Reviews in Biotechnology, 37(4), 510-524. https://doi.org/10.1080/07388551.2016.1189871 
  35. Rhim, J. W., Gennadios, A., Handa, A., Weller, C. L., & Hanna, M. A. (2000). Solubility, tensile, and color properties of modified soy protein isolate films. Journal of Agricultural and Food Chemistry, 48(10), 4937-4941. https://doi.org/10.1021/jf0005418 
  36. Schefer, S., Oest, M., & Rohn, S. (2021). Interactions between phenolic acids, proteins, and Carbohydrates: Influence on dough and bread properties. Foods, 10(11), 2798. https://doi.org/10.3390/foods10112798 
  37. Shim, E., & Kim, H. R. (2019). Coloration of bacterial cellulose using in situ and ex situ methods. Textile Research Journal, 89(7), 1297-1310. https://doi.org/10.1177/0040517518770673 
  38. Shin, Y., & Cho, E. (2001a). Dyeing properties of silk fabric with pomegranate colorant. Journal of the Korean Society of Clothing and Textiles, 25(2), 268-274. 
  39. Shin, Y., & Cho, E. (2001b). Dyeing properties of cotton fabric with pomegranate colorants and antimicrobial properties. Journal of the Korean Society of Clothing and Textiles, 25(3), 577-585. 
  40. Shin, Y., & Choi, H. (1999a). Characteristics and dyeing properties of green tea colorants (part I): Components and characteristics of green tea colorants. Journal of the Korean Society of Clothing and Textiles, 23(1), 140-146. 
  41. Shin, Y., & Choi, H. (1999b). Characteristics and dyeing properties of green tea colorants (part III): Dyeing properties of cotton with green tea colorants. Journal of the Korean Society of Clothing and Textiles, 23(4), 510-516. 
  42. Soares, R. M. D., & Soldi, V. (2010). The influence of different cross-linking reactions and glycerol addition on thermal and mechanical properties of biodegradable gliadin-based film. Materials Science & Engineering: C, 30(5), 691-698. https://doi.org/10.1016/j.msec.2010.02.026 
  43. Song, H. S., & Kim, B. H. (2004). 천연염색 (아름다운 우리의 색) [Natural dyeing (Our Beautiful Colors)]. Sookmyung Women's University Press. 
  44. Song, J. E., Cavaco-Paulo, A., Silva, C., & Kim, H. R. (2020). Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. Textile Research Journal, 90(2), 166-178. https://doi.org/10.1177/0040517519862886 
  45. Song, J. E., Su, J., Loureiro, A., Martins, M., Cavaco-paulo, A., Kim, H. R., & Silva, C. (2017). Ultrasound-assisted swelling of bacterial cellulose. Engineering in Life Science, 17, 1108-1117. https://doi.org/10.1002/elsc.201700085 
  46. Song, J. E., Su, J., Noro, J., Cavaco-Paulo, A., Silva, C., & Kim, H. R. (2018). Bio-coloration of bacterial cellulose assisted by immobilized laccase. AMB Express, 8(19), 1-11. https://doi.org/10.1186/s13568-018-0552-0 
  47. Stepanova, T., & Akrashie, N. A. (2021). Study of organoleptic and technological properties of minced meat products with addition of mushroom powder. BIO Web of Conferences, 30,1020. https://doi.org/10.1051/bioconf/20213001020 
  48. Torres, F. G., Arroyo, J. J., & Troncoso, O. P. (2019). Bacterial cellulose nanocomposites: An all-nano type of material. Materials Science & Engineering: C, 98, 1277-1293. https://doi.org/10.1016/j.msec.2019.01.064 
  49. Wang, X., Ullah, N., Sun, X., Guo, Y., Chen, L., Li, Z., & Feng, X. (2017). Development and characterization of bacterial cellulose reinforced biocomposite films based on protein from buckwheat distiller's dried grains. International Journal of Biological Macromolecules, 96, 353-360. https://doi.org/10.1016/j.ijbiomac.2016.11.106 
  50. Wang, Y., Xie, Y., Wang, A., Wang, J., Wu, X., Wu, Y., Fu, Y., & Sun, H. (2022). Insights into interactions between food polyphenols and proteins: An updated overview. Journal of Food Processing and Preservation, 46, e16597. https://doi.org/10.1111/jfpp.16597 
  51. Wu, R., Wang, X., Wang, Y., Bian, X., & Li, F. (2009). Cellulose/soy protein isolate blend films prepared via room-temperature ionic liquid. Industrial & Engineering Chemistry Research, 48(15), 7132-7136. https://doi.org/10.1021/ie9001052 
  52. Ye, J., Fan, F., Xu, X., & Liang, Y. (2013). Interactions of black and green tea polyphenols with whole milk. Food Research International, 53(1), 449-455. https://doi.org/10.1016/j.foodres.2013.05.033 
  53. Zhang, Y., Zhou, Q., Xia, W., Rather, L. J., & Li, Q. (2022). Sonochemical mordanting as a green and effective approach in enhancing cotton bio natural dye affinity through soy surface modification. Journal of Cleaner Production, 336, 130465. https://doi.org/10.1016/j.jclepro.2022.130465